
TaurusDB

Kernels

Issue 01

Date 2024-12-30

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 TaurusDB Kernel Version Release History... 1

2 Common Kernel Functions.. 14
2.1 Parallel Query...14
2.1.1 Overview...14
2.1.2 Precautions.. 15
2.1.3 Enabling Parallel Query...20
2.1.4 Testing Parallel Query Performance... 23
2.2 Near Data Processing.. 25
2.2.1 Overview...25
2.3 DDL Optimization... 27
2.3.1 Parallel DDL...27
2.3.2 DDL Fast Timeout..29
2.3.3 Non-blocking DDL...31
2.3.4 Progress Queries for Creating Secondary Indexes..34
2.4 Backward Index Scan... 36
2.5 Statement Outline.. 39
2.6 Idle Transaction Disconnection.. 46
2.6.1 Function.. 46
2.6.2 Parameter Description... 46
2.6.3 Example.. 48
2.7 LIMIT...OFFSET Pushdown.. 49
2.7.1 Function.. 49
2.7.2 Usage... 50
2.7.3 Performance Tests... 51
2.8 Conversion of IN Predicates Into Subqueries.. 52
2.8.1 Function.. 52
2.8.2 Precautions.. 53
2.8.3 Usage... 53
2.8.4 Performance Tests... 55
2.9 DISTINCT Optimization for Multi-Table Joins... 55
2.10 Diagnosis on Large Transactions...59
2.11 Enhanced Partitioned Tables.. 62
2.11.1 Subpartitioning.. 62

TaurusDB
Kernels Contents

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

2.11.1.1 Overview... 62
2.11.1.2 Precautions.. 63
2.11.1.3 RANGE-RANGE... 63
2.11.1.4 RANGE-LIST... 65
2.11.1.5 LIST-RANGE... 67
2.11.1.6 LIST-LIST..68
2.11.1.7 HASH-HASH.. 70
2.11.1.8 HASH-KEY.. 71
2.11.1.9 HASH-RANGE..72
2.11.1.10 HASH-LIST... 74
2.11.1.11 KEY-HASH.. 75
2.11.1.12 KEY-KEY.. 76
2.11.1.13 KEY-RANGE..77
2.11.1.14 KEY-LIST.. 78
2.11.2 LIST DEFAULT HASH.. 80
2.11.3 INTERVAL RANGE... 85
2.11.4 Partition-level MDL.. 93
2.12 Hot Row Update... 96
2.13 Multi-tenant Management and Resource Isolation...104
2.14 Column Compression.. 118
2.15 Table Recycle Bin..127
2.16 Cold Data Preloading for Read Replicas.. 135
2.17 Self-Healing of Read Replicas upon a Replication Latency...136

TaurusDB
Kernels Contents

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

1 TaurusDB Kernel Version Release History

This section describes the kernel version updates of TaurusDB.

TaurusDB
Kernels 1 TaurusDB Kernel Version Release History

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

2.0.54.240900

Table 1-1 Version 2.0.54.240900

Date Description

2024-10-18 ● New features and optimized features
– Partition-level MDL: In MySQL Community Edition,

you cannot perform both data manipulation language
(DML) operations for accessing data of partitioned
tables and data definition language (DDL) operations
for maintaining partitions at the same time. This
means that DDL operations can only be done during
off-peak hours. To resolve such an issue, this version
introduces partition-level metadata lock (MDL) to
refine the lock granularity of a partitioned table from
the table level to the partition level. After partition-
level MDL is enabled, DML operations and specific
DDL operations (such as adding and deleting
partitions) on different partitions can be both
performed, greatly improving concurrency between
partitions.

– Table recycle bin: After this function is enabled, the
DROP TABLE statement that meets conditions does
not directly delete a specified table. Instead, the table
is temporarily stored in the recycle bin. When the
maximum retention period expires, the table is
automatically deleted in the backend. You can change
the retention period of a deleted table in the recycle
bin. You can also restore or permanently delete a
table from the recycle bin at any time.

● Fixed issues
– Fixed the issue that CPU resources of each tenant are

not strictly allocated based on the configured ratio in
resource preemption scenarios.

– Allowed Statement Outline to support views and
EXPLAIN ANALYZE statements.

TaurusDB
Kernels 1 TaurusDB Kernel Version Release History

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

2.0.54.240600

Table 1-2 Version 2.0.54.240600

Date Description

2024-07-19 ● New features and optimized features
– Optimized hot row update: Hot rows are frequently

updated for flash sales, concert ticket reservations,
and train ticket bookings for popular routes. This
version enhances hot row update, which can be
enabled automatically or manually. After hot row
update is enabled, hot rows can be updated
efficiently.

– Non-blocking DDL: When you perform a DDL
operation, if the target table has uncommitted long
transactions or large queries, the DDL operation
continuously waits for obtaining the MDL-X lock. As a
result, service connections are stacked and blocked.
This version supports non-blocking DDL, which allows
new transactions to enter the target table even if the
MDL-X lock cannot be obtained, ensuring the stability
of the entire service system.

– Multi-tenant management: This feature enables a
database to serve multiple tenants, maximizing
database resource utilization.

– Binlog pull for read replicas: You can use read replicas
as the data source to establish a binlog replication
link and synchronize the binlogs in real time, which
helps reduce the load on the primary node.

– Column compression: TaurusDB introduces fine-
grained column compression to reduce data page
storage and save costs. Two compression algorithms,
ZLIB and ZSTD, are provided. You can select either of
them to compress infrequently accessed large
columns based on the compression ratio and
compression and decompression performance.

– INTERVAL RANGE partitioned tables: In previous
versions, if the data to be inserted into an existing
RANGE partitioned table exceeds the range of existing
partitions, the data cannot be inserted and an error is
returned. With the support for INTERVAL RANGE
partitioned tables in this version, the database can
now create partitions based on rules specified by the
INTERVAL clause when new data exceeds the range of
existing partitions.

– LIST DEFAULT HASH partitioned tables: This feature
supports two types of partitions at the same level:
LIST and HASH. Data is first inserted into LIST
partitions. Data that does not comply with the LIST

TaurusDB
Kernels 1 TaurusDB Kernel Version Release History

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

Date Description

partitioning rules is placed in the DEFAULT partition.
If the DEFAULT partition has multiple partitions,
HASH rules are used. LIST DEFAULT HASH partitioned
tables are usually used in scenarios where LIST
VALUES are unevenly distributed and cannot be fully
enumerated.

● Fixed issues
– Optimized the table-level restoration performance.
– Optimized the execution performance of read replicas

of a high-spec instance in high-concurrency scenarios.

2.0.51.240300

Table 1-3 Version 2.0.51.240300

Date Description

2024-03-30 ● New features and optimized features
– Added global consistency, which provides strongly

consistent reads at the cluster level with low
performance loss.

– Added the SHOW BINARY LOGS NO BLOCK syntax,
which prevents transaction commits from being
blocked during the execution of SHOW BINARY LOGS.

– Optimized the UNDO TRUNCATE capability, which
solves the issue of undo space expansion caused by a
large number of writes.

– Enhanced the degree of parallelism for full
restoration, which optimizes the backup and
restoration efficiency.

● Fixed issues
– The query results of window functions are incorrect,

or errors occur when window functions are executed.
– Database nodes break down when specific PREPARE

statements are repeatedly executed after plan cache
is enabled.

– An error is reported due to inconsistent character sets
when stored procedures are executed in sequence.

– Query results do not meet the expectation when an
on-disk hash join is performed after PQ is enabled.

– An error is reported due to duplicate primary keys
when a query involves performing a GROUP BY
operation on temporary table fields.

TaurusDB
Kernels 1 TaurusDB Kernel Version Release History

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

2.0.48.231200

Table 1-4 Version 2.0.48.231200

Date Description

2024-01-30 ● New features and optimized features
– Enhanced composite partitioning: In addition to

RANGE-HASH and LIST-HASH of MySQL Community
Edition, added RANGE-RANGE, RANGE-LIST, LIST-
RANGE, LIST-LIST, HASH-HASH, HASH-KEY, HASH-
RANGE, HASH-LIST, KEY-HASH, KEY-KEY, KEY-RANGE,
and KEY-LIST.

– Added the forward compatibility with GROUP BY
implicit/explicit sorting in MySQL 5.7.

– Added the forward compatibility with the
max_length_for_sort_data parameter in MySQL 5.7,
which optimizes the file sorting performance in
specific scenarios.

– Optimized the issue that accessing views in
information_schema is slow due to incorrect execution
plan selection.

– Added the EXIST subquery in PQ.
– Optimized restoration of database tables or instances

to a specific point in time.
● Fixed issues

– OpenSSL is upgraded.
– The default value SYSTEM of the time_zone

parameter impacts the efficiency of concurrent SQL
statement execution in some scenarios.

– SQL query results are incorrect when conditions are
partially pushed down to a materialized derived table.

– Performance suffers after PQ is enabled for on-disk
hash joins in some scenarios.

– The permissions page is not updated accordingly after
a user is granted permissions on a database through
the console and the database is later deleted in non-
console mode.

TaurusDB
Kernels 1 TaurusDB Kernel Version Release History

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

2.0.45.230900

Table 1-5 Version 2.0.45.230900

Date Description

2023-11-24 ● New features and optimized features
– Added forward compatibility of datatime,

timestamp, and time field behaviors.
– Added on-disk hash joins in PQ.
– Added INSERT and REPLACE SELECT functions in PQ.
– Added log printing mechanism for connection and

disconnection, which helps you locate connection-
related issues quickly.

– Added some useful information in slow query logs,
which helps you locate slow SQL statements.

– Allowed you to dynamically enable binlog.
– Optimized the NDP bloom filter.
– Allowed you to use the CAST (... AS INT) syntax.
– Optimized the Nested Loop Join + Distinct

performance.
– Identified slice ID corresponding to the slow I/O

quickly.
– Added the sal_init log, which helps you to locate

storage API timeout issues.
● Fixed issues

– There are trx_id and cpu_time fields in full SQL
statements.

– Character strings can be converted into INT in
WHERE conditions of PREPARE statements.

– No crash issue occurs when DDL operations and
queries are concurrently executed on a read replica.

– The binlogs that are sharply generated in a short
period of time can be cleared in a timely manner.

– Execution results are consistent after PQ is enabled
for multi-table JOIN SQL statements.

– Backward Index Scan is compatible with ICP.
– weight_string functions support LEVEL clauses.
– The results of the same SQL statement using

different indexes are consistent.
– When NDP and PQ are enabled at the same time,

recycle LSN is correct.

TaurusDB
Kernels 1 TaurusDB Kernel Version Release History

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

2.0.42.230600

Table 1-6 Version 2.0.42.230600

Date Description

2023-08-31 ● New features and optimized features
– Added support for storing full and incremental

backups on read replicas, which reduces the memory
and CPU usage of the primary node.

– Optimized UNDO damage location: When the undo
damage occurs during startup, the undo damage log
and the corresponding table name are printed.

– Improved the query performance of read replicas.
– Added the conversion of IN predicates to subqueries.
– Supported large-scale commercial use of the NDP

feature.
– Optimized execution plans using statement outline.
– Supported round functions in PQ.

● Fixed issues
– The ORDER BY LIMIT and ORDER LIMIT result sets do

not overlap when fast sorting and priority queue
sorting algorithms are used.

– Returned results are correct for PQ statements.
– No errors are reported when PREPARE statements are

executed.
– No PQ assertion errors are reported on UNION

queries.
– The results of full-text index queries are correct after

a read replica is promoted to the primary while a
large amount of data is being inserted into the
primary node.

– When read replicas use the general_log and slow_log
tables, warning logs will not be displayed.

– After the value of the parameter
innodb_lock_wait_timeout is changed, the actual
timeout wait time is correct.

– When a read replica is promoted to primary, there is
no the error "Failed to find page in slice manager".

– The percentage for the PWAL scanning progress in the
SALSQL log cannot exceed 100%.

– When the sqlsmith tool is executed, there is no the
error "mysqld coredump" in the EXPLAIN phase of
query statements.

– In SELECT DISTINCT CAST functions, datetime can be
converted to the float type correctly.

TaurusDB
Kernels 1 TaurusDB Kernel Version Release History

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

2.0.39.230300

Table 1-7 Version 2.0.39.230300

Date Description

2023-05-11 ● New features and optimized features
– Supported small-scale instances.
– Optimized the solution when DDL statements on

standby nodes fail.
– Optimized the capacity calculation of salsql.
– Supported the restriction on resources of a single

SQL statement.
– Supported the use of per thread for admin port and

local socket.
– Optimized the memory of pwalScanner.
– Supported the modification of

default_collation_for_utf8mb4 parameter.
– Supported diagnosis on large transactions.
– Supported the killing of idle transactions.
– Accelerated incremental restoration.
– Added database and account descriptions.
– Supported the acceleration of buffer pool resize.

● Fixed issues
– Ptrc does not lead to inconsistent execution results of

Nestedloop join.
– No crash issue occurs when subqueries are sorted

using Windows functions.
– When using rewrites view, tables are not evaluated

to turn left joins into inner joins.
– Execution results are returned from decimal data

that meets specified filter criteria.
– Memory is aligned.
– Scan_row is correctly recorded in full logs.

2.0.28.18

Table 1-8 Version 2.0.28.18

Date Description

2023-05-17 Errors of exceeded sorting memory are not reported for
columns containing large JSON data.

TaurusDB
Kernels 1 TaurusDB Kernel Version Release History

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

2.0.28.17

Table 1-9 Version 2.0.28.17

Date Description

2023-04-02 Character sets are not used in combination in prepared
statements.

2.0.28.16

Table 1-10 Version 2.0.28.16

Date Description

2023-03-14 ● New features
Reduced primary/standby latency.

● Fixed issues
– No error occurs when JSON-related functions are

used in prepare statements.
– Query results are returned when filter criteria are

specified.
– No null pointer error is reported after Windows

functions generate a temporary disk table.
– The crash issue caused by the use of null pointers in

Windows functions is resolved.
– Prepared statements are executed successfully.

TaurusDB
Kernels 1 TaurusDB Kernel Version Release History

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

2.0.28.15

Table 1-11 Version 2.0.28.15

Date Description

2023-01-11 ● New features
– Supported SQL statement concurrency control.
– Optimized read flow control.
– Optimized the consistency of primary/standby

execution plan.
– Pre-created slices asynchronously.

● Fixed issues
– No crash issue occurs when the system variable

INNODB_VALIDATE_TABLESPACE_PATHS is disabled
and the undo space truncate command is executed.

– The query of information_schema.innodb_trx is fast.
– The issue of inconsistent results is resolved: left joins

now are turned into inner joins.
– The crash issue caused by subquery optimization is

resolved.
– Values of the Instant field are correctly obtained

under concurrent instant DDL and DML operations.
– No OOM issue occurs when two InnoDB tables with

FTS indexes are loaded.
– No OOM issue occurs when the data dictionary of

millions of tables is being updated.

2.0.28.12

Table 1-12 Version 2.0.28.12

Date Description

2022-12-07 Scan errors triggered by Skip Scans are not displayed when
a table with virtual columns is updated.

TaurusDB
Kernels 1 TaurusDB Kernel Version Release History

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

2.0.28.10

Table 1-13 Version 2.0.28.10

Date Description

2022-11-16 During a primary/standby switchover, databases will not
break down when connecting to the standby instance times
out.

2.0.28.9

Table 1-14 Version 2.0.28.9

Date Description

2022-09-23 ● The If(...) statement in
Condition_pushdown::replace_columns_in_cond is
modified.

● The database does not break down when:
– Storage functions are invoked recursively.
– Multiple tables are deleted or full-text search is

performed.
– SQL query statements of multiple window functions

are executed.
● Users with global permission can successfully run SHOW

CREATE DATABASE.

2.0.28.7

Table 1-15 Version 2.0.28.7

Date Description

2022-08-25 The ptrc crash problem in stored procedure is resolved.

TaurusDB
Kernels 1 TaurusDB Kernel Version Release History

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

2.0.28.4

Table 1-16 Version 2.0.28.4

Date Description

2022-07-22 ● Databases will not break down due to empty accounts.
● When a temporary table used for aggregation is

updated, BLOB points to the latest data.

2.0.28.1

Table 1-17 Version 2.0.28.1

Date Description

2022-05-16 ● New features
– You can enable or disable orphaned definer check

control.
– TaurusDB supports transparent transmission of proxy

IP addresses.
– You can set the consistency level of your proxy

instances to session consistency.
● Fixed issues

– The data dictionary on standby nodes is updated if
DDL statements on the primary node are not
submitted.

– During a failover, the auto increment of the primary
node is not rolled back.

– The performance issue of standby nodes is resolved.

TaurusDB
Kernels 1 TaurusDB Kernel Version Release History

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

2.0.31.220700

Table 1-18 Version 2.0.31.220700

Date Description

2022-08-12 ● New features and performance optimized
– Supported SQL statement concurrency control.
– Added a limit to concurrent numbers of Faster DDL.
– Supported all Faster DDL operations in row format.
– Extended full SQL fields.
– Optimized flow control.
– Supported the quick timeout of ALTER TABLE.
– Supported the query of plan cache.
– Optimized statistics on standby nodes.

● Fixed issues
– Standby nodes do not break down after partition-

table on the primary node is renamed.
– The default buffer size of SQL tracer is modified.
– When the truncate lsn of standby nodes lags behind,

the standby nodes can start successfully.
– The execution plan error is not displayed when SQL

queries with the same range are executed.
– The crash issue caused by empty accounts is resolved.
– The crash issue caused by database dropping is

resolved.

TaurusDB
Kernels 1 TaurusDB Kernel Version Release History

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

2 Common Kernel Functions

2.1 Parallel Query

2.1.1 Overview

What Is Parallel Query?
Parallel query (PQ) reduces the processing time of analytical queries to satisfy the
low latency requirements of enterprise-grade applications. It distributes a query
task to multiple CPU cores for computation to shorten the query time.
Theoretically, the performance improvement of parallel query is positively
correlated with the number of CPU cores. The more CPU cores are used, the
higher the performance improvement is.

The following figure shows the count(*) process for a table based on parallel
query. Table data is divided into blocks and distributed to multiple cores for
parallel computing. Each core processes some data to obtain an intermediate
count(*) result, and all the intermediate results are aggregated to obtain the final
result.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

Figure 2-1 How PQ works

Scenarios
Parallel query is mainly suitable for SELECT statements to query large tables,
multiple tables, and a large amount of data. This feature does not benefit
extremely short queries.

● Lightweight analysis
The SQL statements for report queries are complex and time-consuming.
Parallel query can improve the efficiency of a single query.

● More available system resources
Parallel query requires more system resources. You can enable parallel query
to improve resource utilization and query efficiency only when the system has
a large number of CPUs, low I/O loads, and sufficient memory resources.

● Frequent data queries
For data-intensive queries, you can use parallel query to improve query
processing efficiency, ease network traffic, and reduce pressure on compute
nodes.

2.1.2 Precautions
● Parallel query is in the open beta test (OBT) phase. You are advised to use it

in the test environment.
● The TaurusDB engine version must be MySQL 8.0.22 or later.
● Both read replicas and primary nodes support parallel query. Parallel query

consumes a lot of compute resources (such as CPU and memory). To ensure
instance stability, parallel query is disabled by default on primary nodes of
TaurusDB instances whose kernel version is 2.0.42.230600 or later. To use
parallel query, contact customer service.

● Parallel query is suitable for the following scenarios:
– Full table scans, index scans, index range scans, index reverse scans, index

point queries, and index pushdown
– Single-table queries, multi-table joins, views, subqueries, and partial CTE

queries

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

– Multiple JOIN algorithms, including BNL JOIN, BKA JOIN, HASH JOIN,
NESTED LOOP JOIN, SEMI JOIN, ANTI JOIN, and OUTER JOIN

– Multiple subqueries, including conditional subqueries, scalar subqueries,
some correlated subqueries, non-correlated subqueries, and derived
tables

– Multiple data types, including Integer, Character, Floating Point, and Time
– Arithmetic expressions (+, -, *, %, /, |, and &), conditional expressions (<,

<=, >, >=, <>, BETWEEN/AND, and IN), logical operations (OR, AND, and
NOT), and common functions (Character, Integer, and Time), and
aggregation functions (COUNT/SUM/AVG/MIN/MAX)

NO TE

The COUNT aggregate function can only be executed concurrently when
innodb_parallel_select_count is disabled.

– Non-partitioned table queries, and queries for a single partition of
partitioned tables

– ORDER BY, GROUP BY/DISTINCT, LIMIT/OFFSET, WHERE/HAVING, and
column projection

– UNION/UNION ALL queries
– EXPLAIN statements to view execution plans, including traditional Explain

statements, EXPLAIN FORMAT=TREE, and EXPLAIN FORMAT=JSON
● Parallel query is not suitable for the following scenarios:

– Non-query statements
– Window functions
– Triggers
– Prepared statements
– Spatial indexes
– System tables, temporary tables, and non-InnoDB tables
– Full-text indexes
– Stored procedures
– Subqueries that cannot be converted to semi-joins
– Statements that do not meet the ONLY_FULL_GROUP_BY rules
– Index Merge statements
– HASH JOIN operations, during which data overflows to disks
– Lock queries, such as SERIALIZABLE isolation level, FOR UPDATE or

SHARE LOCK
– Recursive queries
– WITH ROLLUP
– Statements with keyword HIGH_PRIORITY
– No line of data returned in the execution result. (The execution plan

shows: Zero limit, Impossible WHERE, Impossible HAVING, No matching
min/max row, Select tables optimized away, Impossible HAVING noticed
after reading const tables, or no matching row in const table)

– Columns with type ZEROFILL. Its column values can be optimized to
constants.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

– Generated columns, BLOB, TEXT, JSON, and GEOMETRY
– Spatial functions (such as SP_WITHIN_FUNC)
– DISTINCT clauses in aggregate functions, such as SUM(DISTINCT),

AVG(DISTINCT), and COUNT(DISTINCT)
– GROUP_CONCAT
– JSON_ARRAYAGG and JSON_OBJECTAGG
– User-defined functions
– STD, STDDEV, and STDDEV_POP
– VARIANCE, VAR_POP, and VAR_SAMP
– BIT_AND, BIT_OR, and BIT_XOR
– set_user_var
– RAND functions with parameters
– json_* (such as json_length and json_type)
– st_distance
– get_lock
– is_free_lock, is_used_lock, release_lock, and release_all_locks
– sleep
– xml_str
– weight_string
– REF functions (VIEW_REF, OUTER_REF, and AGGREGATE_REF)
– SHA, SHA1, SHA2, and MD5
– row_count
– User-related functions (such as user, current_user, session_user, and

system_user)
– extractvalue
– GeomCollection, GeometryCollection, LineString, MultiLineString,

MultiPoint, MultiPolygon, and Polygon
– MASTER_POS_WAIT
– Spatial relationship functions, such as MBRContains, MBRCoveredBy,

MBRCovers, MBRDisjoint, MBREquals, MBRIntersects, MBROverlaps,
MBRTouches, and MBRWithin

– Point
– PS_CURRENT_THREAD_ID()
– PS_THREAD_ID(CONNECTION_ID())
– WAIT_FOR_EXECUTED_GTID_SET
– WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS
– UNCOMPRESS (COMPRESS ())
– STATEMENT_DIGEST_TEXT
– Functions BINARY and CONVERT
– Functions starting with ST_

● The execution results of parallel queries may be incompatible with that
of serial queries.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

– Number of errors or alarms
If an error or alarm message is displayed during serial queries, the error
or alarm message will be displayed in each worker thread during the
parallel queries. As a result, the total number of error or alarm messages
increases.

– Precision
During the parallel queries, if there is a function type in a SELECT
statement, additional stored procedures will be generated in the
intermediate results. As a result, compared with serial queries, the
precision of the floating point part in parallel queries may be different,
and the final result may be slightly different.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

– Truncation
During the parallel queries, if there is a function type in a SELECT
statement, additional stored procedures will be generated in the
intermediate results. In this process, the calculation result of the function
needs to be cached, and data truncation may occur (generally due to
data type conversion, for example, covering a floating-point value to a
character string). As a result, the final result is different from the serial
queries.

– Sequence of result sets
Because tasks are executed by multiple worker threads during parallel
queries, the sequence of the returned result set may not be consistent
with that of serial queries. In the case of a query with LIMIT, this problem
is more likely to occur. If fields of GROUP BY are invisible characters, the
sequence of the returned result set is also different.

– UNION ALL result sets
UNION ALL ignores sort operators. The sequence of the returned result
set in parallel execution may be different from that in non-parallel
execution. In the case of a query with LIMIT, the result sets are different.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

2.1.3 Enabling Parallel Query

System Parameters and Status Variables
● Table 2-1 lists the supported system parameters.

Table 2-1 System parameters

Parameter Level Description

force_parallel_ex
ecute

Global,
Session

Enables or disables parallel query. If this
parameter is set to ON, parallel query is
enabled.
● Value range: ON and OFF
● Default value: OFF

parallel_max_thr
eads

Global Maximum number of active threads
allowed for parallel execution. If the
number of active threads in the current
system exceeds the value of this
parameter, parallel execution cannot be
enabled for new queries.
● Value range: 0 to 4294967295
● Default value: 64

parallel_default_
dop

Global,
Session

Default parallelism degree for parallel
execution. If the parallelism degree is
not specified in query statements, this
parameter value is used.
● Value range: 0 to 1024
● Default value: 4

parallel_cost_thr
eshold

Global,
Session

Cost threshold for enabling parallel
execution. If the parallel execution cost
of query statements exceeds the value
of this parameter, parallel execution is
enabled.
● Value range: 0 to 4294967295
● Default value: 1000

parallel_queue_t
imeout

Global,
Session

Waiting time of the parallel execution.
If the waiting time exceeds the value of
this parameter, new queries will be
executed in single-thread mode.
● Value range: 0 to 4294967295
● Default value: 0

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

Parameter Level Description

parallel_memory
_limit

Global Maximum available memory for parallel
execution. If the amount of memory
used for parallel execution exceeds the
value of this parameter, new queries
will not be executed in parallel mode.
● Value range: 0 to 4294967295
● Default value: 104857600

● Table 2-2 lists the supported status variables.

Table 2-2 Status variables

Variable Level Description

PQ_threads_runni
ng

Global Total number of concurrent threads
that are running.

PQ_memory_used Global Total memory used for parallel
execution.

PQ_threads_refus
ed

Global Total number of queries that fail to be
executed in parallel due to the limit on
the total number of threads.

PQ_memory_refu
sed

Global Total number of queries that fail to be
executed in parallel due to the limit on
the total memory.

Enabling Parallel Query

You can enable or disable parallel query by configuring system parameters in the
console or using hints in SQL statements.

● Method 1: Configuring system parameters in the console
Log in to the console and go to the Parameters page to configure the
following system parameters:
force_parallel_execute: determines whether to forcibly enable parallel
execution.
parallel_default_dop: indicates the parallelism degree for parallel execution.
It controls the number of concurrent threads.
parallel_cost_threshold: indicates the cost threshold for enabling parallel
execution.
Theses parameters can be modified at any time. The modifications will take
effect immediately and you do not need to reboot the instance.
For example, if you want to forcibly enable parallel execution, set the
parallelism degree to 4, and set the minimum execution cost to 0, configure
the parameters as follows:

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

SET force_parallel_execute=ON
SET parallel_default_dop=4
SET parallel_cost_threshold=0

● Method 2: Using hints in SQL statements
Hints can be used to control whether a single statement is executed in
parallel. If parallel execution is disabled by default, uses hints to enable
parallel execution for specific SQL statements. You can also use hints to
disable parallel execution for specified SQL statements.
Enabling parallel execution:
Enabling parallel execution: SELECT /*+ PQ() */... FROM...
Enabling parallel execution and setting the parallelism degree to 8: SELECT /*
+ PQ(8) */... FROM...
Enabling parallel execution and set the parallel-executed table to t1:
SELECT /*+ PQ(t1) */... FROM...
Enabling parallel execution, set the parallel-executed table to t1, and set the
parallelism degree to 8: SELECT /*+ PQ(t1 8) */... FROM...

NO TE

SELECT is followed by PQ (Hints). Otherwise, the hints do not take effect. dop
indicates the parallelism degree of a parallel query and its value ranges from 1 to
min(parallel_max_threads, 1024).

When the dop value exceeds the normal range, parallel query does not take effect.

Disabling parallel execution: When parallel query is enabled, use the
NO_PQ to disable parallel execution of a single SQL statement.
SELECT /*+ NO_PQ */ … FROM …

NO TE

NO_PQ (Hints) takes precedence over PQ (Hints). If an SQL statement contains
NO_PQ (Hints), the SQL statement will not be executed concurrently even if PQ
(Hints) is configured.

Checking the Statuses of Query Statements Executed in Parallel

Run the following SQL statement to display the statuses of query statements
executed in parallel, as shown in Figure 2-2.

show status like "%PQ%"

Figure 2-2 Status

Use EXPLAIN to display the parallel execution plans of the query statements, as
shown in Figure 2-3.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Figure 2-3 Parallel execution plan

NO TE

Compared with a traditional execution plan, a parallel execution plan has one more row of
records. In the first row of the query result, the parallel-executed tables and parallelism
degree are displayed.

2.1.4 Testing Parallel Query Performance
This section describes how to use the TPC-H test tool to test the performance of
22 parallel queries.

The test instance information is as follows:

● Instance specifications: 32 vCPUs | 256 GB
● Kernel version: 2.0.26.1
● Concurrent threads: 16
● Data volume: 100 GB

Procedure

Step 1 Generate test data.

1. Download the shared source code in the TPC-H test from https://github.com/
electrum/tpch-dbgen.

2. Find the makefile.suite file, modify its contents as follows, and save the
modifications:
CC = gcc
Current values for DATABASE are: INFORMIX, DB2, TDAT (Teradata)
SQLSERVER, SYBASE, ORACLE
Current values for MACHINE are: ATT, DOS, HP, IBM, ICL, MVS,
SGI, SUN, U2200, VMS, LINUX, WIN32
Current values for WORKLOAD are: TPCH
DATABASE= SQLSERVER
MACHINE = LINUX
WORKLOAD = TPCH

3. In the root directory of the source code, run the following command to
compile and generate the data tool dbgen:
make -f makefile.suite

4. Run the following command to generate 100 GB data:
./dbgen -s 100

Step 2 Log in to a TaurusDB instance, create a database, and run the following command
to create a table:
CREATE TABLE nation (N_NATIONKEY INTEGER NOT NULL,
 N_NAME CHAR(25) NOT NULL,
 N_REGIONKEY INTEGER NOT NULL,
 N_COMMENT VARCHAR(152));

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

CREATE TABLE region (R_REGIONKEY INTEGER NOT NULL,
 R_NAME CHAR(25) NOT NULL,
 R_COMMENT VARCHAR(152));
CREATE TABLE part (P_PARTKEY INTEGER NOT NULL,
 P_NAME VARCHAR(55) NOT NULL,
 P_MFGR CHAR(25) NOT NULL,
 P_BRAND CHAR(10) NOT NULL,
 P_TYPE VARCHAR(25) NOT NULL,
 P_SIZE INTEGER NOT NULL,
 P_CONTAINER CHAR(10) NOT NULL,
 P_RETAILPRICE DECIMAL(15,2) NOT NULL,
 P_COMMENT VARCHAR(23) NOT NULL);
CREATE TABLE supplier (S_SUPPKEY INTEGER NOT NULL,
 S_NAME CHAR(25) NOT NULL,
 S_ADDRESS VARCHAR(40) NOT NULL,
 S_NATIONKEY INTEGER NOT NULL,
 S_PHONE CHAR(15) NOT NULL,
 S_ACCTBAL DECIMAL(15,2) NOT NULL,
 S_COMMENT VARCHAR(101) NOT NULL);
CREATE TABLE partsupp (PS_PARTKEY INTEGER NOT NULL,
 PS_SUPPKEY INTEGER NOT NULL,
 PS_AVAILQTY INTEGER NOT NULL,
 PS_SUPPLYCOST DECIMAL(15,2) NOT NULL,
 PS_COMMENT VARCHAR(199) NOT NULL);
CREATE TABLE customer (C_CUSTKEY INTEGER NOT NULL,
 C_NAME VARCHAR(25) NOT NULL,
 C_ADDRESS VARCHAR(40) NOT NULL,
 C_NATIONKEY INTEGER NOT NULL,
 C_PHONE CHAR(15) NOT NULL,
 C_ACCTBAL DECIMAL(15,2) NOT NULL,
 C_MKTSEGMENT CHAR(10) NOT NULL,
 C_COMMENT VARCHAR(117) NOT NULL);
CREATE TABLE orders (O_ORDERKEY INTEGER NOT NULL,
 O_CUSTKEY INTEGER NOT NULL,
 O_ORDERSTATUS CHAR(1) NOT NULL,
 O_TOTALPRICE DECIMAL(15,2) NOT NULL,
 O_ORDERDATE DATE NOT NULL,
 O_ORDERPRIORITY CHAR(15) NOT NULL,
 O_CLERK CHAR(15) NOT NULL,
 O_SHIPPRIORITY INTEGER NOT NULL,
 O_COMMENT VARCHAR(79) NOT NULL);
CREATE TABLE lineitem (L_ORDERKEY INTEGER NOT NULL,
 L_PARTKEY INTEGER NOT NULL,
 L_SUPPKEY INTEGER NOT NULL,
 L_LINENUMBER INTEGER NOT NULL,
 L_QUANTITY DECIMAL(15,2) NOT NULL,
 L_EXTENDEDPRICE DECIMAL(15,2) NOT NULL,
 L_DISCOUNT DECIMAL(15,2) NOT NULL,
 L_TAX DECIMAL(15,2) NOT NULL,
 L_RETURNFLAG CHAR(1) NOT NULL,
 L_LINESTATUS CHAR(1) NOT NULL,
 L_SHIPDATE DATE NOT NULL,
 L_COMMITDATE DATE NOT NULL,
 L_RECEIPTDATE DATE NOT NULL,
 L_SHIPINSTRUCT CHAR(25) NOT NULL,
 L_SHIPMODE CHAR(10) NOT NULL,
 L_COMMENT VARCHAR(44) NOT NULL);

Step 3 Run the following command to import the generated data to the table:
load data INFILE '/path/customer.tbl' INTO TABLE customer FIELDS TERMINATED BY '|';
load data INFILE '/path/region.tbl' INTO TABLE region FIELDS TERMINATED BY '|';
load data INFILE '/path/nation.tbl' INTO TABLE nation FIELDS TERMINATED BY '|';
load data INFILE '/path/supplier.tbl' INTO TABLE supplier FIELDS TERMINATED BY '|';
load data INFILE '/path/part.tbl' INTO TABLE part FIELDS TERMINATED BY '|';
load data INFILE '/path/partsupp.tbl' INTO TABLE partsupp FIELDS TERMINATED BY '|';
load data INFILE '/path/orders.tbl' INTO TABLE orders FIELDS TERMINATED BY '|';
load data INFILE '/path/lineitem.tbl' INTO TABLE lineitem FIELDS TERMINATED BY '|';

Step 4 Create an index for the table.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

alter table region add primary key (r_regionkey);
alter table nation add primary key (n_nationkey);
alter table part add primary key (p_partkey);
alter table supplier add primary key (s_suppkey);
alter table partsupp add primary key (ps_partkey,ps_suppkey);
alter table customer add primary key (c_custkey);
alter table lineitem add primary key (l_orderkey,l_linenumber);
alter table orders add primary key (o_orderkey);

Step 5 Obtain 22 query statements from https://github.com/dragansah/tpch-dbgen/tree/
master/tpch-queries and perform corresponding operations.

----End

Test Results
Based on 16-thread parallel execution, the performance of 17 query statements is
greatly improved. The query speed of all statements is improved by more than 10
times on average. The following figure shows the TPC-H performance test results.

Figure 2-4 Test results

2.2 Near Data Processing

2.2.1 Overview

What Is Near Data Processing?
Near Data Processing (NDP) is a compute pushdown solution to improve data
query efficiency. For data-intensive queries, operations such as column extraction,
aggregation calculation, and condition filtering are pushed down to multiple
nodes on a distributed storage layer for parallel execution. This reduces query
processing pressure on compute nodes, improves parallel processing capabilities,
and saves network traffic.

How It Works
TaurusDB uses an architecture with decoupled storage and compute to reduce
network traffic. Based on this architecture, NDP is used to accelerate data queries.
Without NDP, all raw data needs to be transmitted from storage nodes to
compute nodes for query processing. NDP pushed the most I/O-intensive and

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

CPU-intensive query tasks down to storage nodes. Only the required columns and
filtered rows or aggregated results are sent back to compute nodes, greatly
reducing network traffic. Additionally, parallel processing across storage nodes
reduces the CPU usage of compute nodes and improves the query efficiency.

NDP is integrated with parallel query. Pages are prefetched in batches to realize
the entire process in parallel. The query execution efficiency is greatly improved.

Figure 2-5 How NDP works

Scenarios

NDP is suitable for the following scenarios:

● Projection
Column pruning: Only the fields required by a query statement are sent to the
compute node.

● Aggregate
Typical aggregation operations include COUNT, SUM, AVG, MAX, MIN, and
GROUP BY. Only the aggregated results (not all tuples) are sent to the query
engine. COUNT (*) is the most common.

● SELECT - WHERE clause for filtering
Common condition expressions are COMPARE(>=,<=,<,>,==), BETWEEN, IN,
AND/OR, and LIKE.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

A filter expression is executed on the storage nodes. Only the rows that meet
the conditions are sent to the compute node.

Application Constraints
1. InnoDB tables.
2. Tables with rows in the COMPACT or DYNAMIC format.
3. Primary keys or B-tree indexes. Hash and full-text indexes are not supported.
4. SELECT statements among the DML statements. INSERT INTO SELECT

statements and SELECT statements that will lock rows (such as SELECT FOR
SHARE/UPDATE) are not supported.

5. Expressions with numeric, log, time, or partial string types (CHAR and
VARCHAR). The utf8mb4 and utf8 character sets are supported.

6. Expression predicates with comparison operators (<,>,=,<=,>=,!=), IN, NOT IN,
LIKE, NOT LIKE, BETWEEN AND, and AND/OR.

Parameters

Table 2-3 Parameter description

Parameter Level Description

ndp_mode Global
NOTE

● To enable NDP at the
global level, contact
technical support.

● NDP is in the test
phase. There are 10
test users in total.

Enables or disables NDP.
Value: off or on
Default value: off

2.3 DDL Optimization

2.3.1 Parallel DDL
Traditional DDL is designed based on a single core and traditional disks. It takes a
long time to perform DDL operations on large tables and the latency is too high.
For example, when creating secondary indexes, DDL operations with high latency
block subsequent DML queries that depend on new indexes.

TaurusDB supports parallel DDL. When database hardware resources are idle, you
can use parallel DDL to accelerate DDL execution, preventing subsequent DML
operations from being blocked and shortening the DDL operation window.

Constraints
● This function is supported when the kernel version is 2.0.45.230900 or later.
● This function is only suitable for BTREE secondary indexes.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

● This function is not suitable for primary key indexes, spatial indexes, and
fulltext indexes. If an SQL statement for concurrently creating indexes
contains a primary key index, spatial index, or fulltext index, the client will
receive an alarm indicating that the operation does not support concurrent
index creation. The statement is executed in single-thread index creation
mode. Assume that multiple threads are specified when a primary key index is
modified. An alarm will also be reported and the index is created through a
single thread.

Enabling Parallel DDL

Table 2-4 Parameter description

Parameter Level Description

innodb_rds_paral
lel_index_creatio
n_threads

Global, Session ● Number of threads for concurrently
creating indexes.

● If the value is greater than 1,
concurrent creation is performed.
Otherwise, single-thread creation is
performed.

● Default value: 8. You are advised to
set the value to be half of the number
of CPU cores and be at most the
value of
innodb_rds_parallel_index_creation_
threads_max.

Example
1. Prepare a sysbench table with 100 million data records.

Figure 2-6 Viewing table information

2. Create an index in the k field of the table.
Create an index for the k field in the table. If a single thread is used to create
the index by default, it should take 146.82 seconds.

Figure 2-7 Creating an index using a single thread

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

3. Set innodb_rds_parallel_index_creation_threads = 4 to use four threads to
create the index.
It should take 38.72 seconds to create the index, 3.79 times faster than with a
single thread.

Figure 2-8 Creating an index using multiple threads

4. Assume that a primary key index needs to be modified. Even if multiple
threads are specified, a warning will be received and the index is created
using just a single thread.

Figure 2-9 Modifying a primary key index

2.3.2 DDL Fast Timeout
For some specific DDL operations, you can configure their metadata lock (MDL)
waiting time, preventing subsequent DML operations from being blocked.

Constraints
● The kernel version is 2.0.45.230900 or later.
● Currently, the following DDL operations are supported: ALTER TABLE, CREATE

INDEX, and DROP INDEX.

Enabling DDL Fast Timeout

Table 2-5 Parameter description

Parameter Level Description

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

rds_ddl_lock_wai
t_timeout

Global, Session Defines how long that a DDL operation
waits for a lock in the current session or
global sessions.
● Value range: 1 to 31536000 (s).

Default value: 31536000, indicating
that the function is disabled.

● The actual lock wait timeout for DDL
operations is the smaller value
between lock_wait_timeout and this
parameter value.

● The actual table lock timeout during
DDL execution at the InnoDB layer is
the minimum value of
innodb_lock_wait_timeout and this
parameter value. Row locks are not
considered.

Example
1. Start a client and add a lock for tables.

Figure 2-10 Adding a lock

2. Run the following command to check the status of the DDL fast timeout
function
show variables like "%rds_ddl_lock_wait_timeout%";

Figure 2-11 Querying the status of the DDL fast timeout function

As shown in the preceding figure, the value of rds_ddl_lock_wait_timeout is
31536000 (default value). The function is disabled. The subsequent
operations will wait for a long time.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

To enable function, referring to 3.

3. Run the following command to set rds_ddl_lock_wait_timeout.

set rds_ddl_lock_wait_timeout=1;

Figure 2-12 Configuring parameters

4. Run the following command to create an index. It is found that the DDL
operation times out quickly.

alter table lzk.t_lzk drop index indexa;

Figure 2-13 Creating an index

2.3.3 Non-blocking DDL
When a user executes a DDL statement on a table with uncommitted long
transactions or large queries, the DDL statement keeps waiting for an MDL-X lock.
TaurusDB gives MDL-X locks the highest priority. When a DDL statement is waiting
for an MDL-X lock, all new transactions on the table are blocked. As a result,
connections are congested, which may even cause the entire service system to
break down. Non-blocking DDL allows new transactions to enter the table even if
the MDL-X lock cannot be acquired, ensuring the stability of the entire service
system.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Prerequisites
The kernel version is 2.0.54.240600 or later.

Constraints
● Enabling non-blocking DDL lowers the priority of DDL statements, and

increases the chance of DDL statement execution failure if an MDL-X lock
cannot be acquired.

● Non-blocking DDL is only supported for ALTER TABLE, RENAME TABLE,
CREATE INDEX, DROP INDEX, and OPTIMIZE TABLE statements.

● If both non-blocking DDL and Partition-level MDL are enabled, the ADD
PARTITION and DROP PARTITION operations will be affected by partition-
level MDL, rendering non-blocking DDL ineffective.

Parameters
You can set rds_nonblock_ddl_enable to enable non-blocking DDL, and then set
rds_nonblock_ddl_retry_times, rds_nonblock_ddl_retry_interval, and
rds_nonblock_ddl_lock_wait_timeout to specify the maximum number, interval,
and timeout period of retries for acquiring an MDL-X lock, respectively.

Table 2-6 Parameter description

Parameter Level Description

rds_nonblock_dd
l_enable

Global, Session Enables or disables non-blocking DDL.
Value range:
● ON: Non-blocking DDL is enabled.
● OFF: Non-blocking DDL is disabled.
Default value: OFF

rds_nonblock_dd
l_lock_wait_time
out

Global, Session Controls how long a statement waits to
acquire the MDL-X lock before giving up.
Value range: 1 to 31536000, in seconds
Default value: 1

rds_nonblock_dd
l_retry_interval

Global, Session Controls the amount of time between
retry attempts for acquiring the MDL-X
lock.
Value range: 1 to 31536000, in seconds
Default value: 6

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

Parameter Level Description

rds_nonblock_dd
l_retry_times

Global, Session Controls the maximum number of times
to retry for acquiring the MDL-X lock.
Value range: 0 to 31536000
Default value: 0
If this parameter is set to 0, the value is
calculated based on the smaller value of
the lock_wait_timeout and
rds_ddl_lock_wait_timeout parameters.
For statements that do not support the
rds_ddl_lock_wait_timeout parameter,
the value is calculated based on the
lock_wait_timeout parameter.

Example
1. Use sysbench to create a test table sbtest1 and insert one million rows of

data into the table.
./oltp_read_write.lua --mysql-host="cluster_address" --mysql-port="port" --mysql-user="username" --
mysql-password="password" --mysql-db="sbtest" --tables=1 --table-size=1000000 --report-interval=1
--percentile=99 --threads=8 --time=6000 prepare

2. Use oltp_read_write.lua in sysbench to simulate user services.
./oltp_read_write.lua --mysql-host="cluster_address" --mysql-port="port" --mysql-user="username" --
mysql-password="password" --mysql-db="sbtest" --tables=1 --table-size=1000000 --report-interval=1
--percentile=99 --threads=8 --time=6000 run

3. Start a new transaction on table sbtest1 but do not commit the transaction.
The transaction holds the MDL lock of table sbtest1.
begin;
select * from sbtest1;

4. Start a new session, add columns to table sbtest1 when non-blocking DDL is
enabled and disabled, and observe the TPS changes.
alter table sbtest1 add column d int;

5. Check the test results.

– When non-blocking DDL is disabled, the TPS keeps decreasing to zero.
The default timeout period is 31,536,000 seconds, which severely affects
user services.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

– When non-blocking DDL is enabled, the TPS periodically decreases but
does not decrease to zero, which has little impact on user services.

2.3.4 Progress Queries for Creating Secondary Indexes
When PFS is disabled, creating indexes in a production environment can take a lot
of time. To help you track DDL progress, this feature displays progress for time-
consuming index creation operations even after performance schema has been
disabled.

Constraints
● The kernel version of your TaurusDB instance must be 2.0.51.240300 or later.
● This feature only displays progress for creating secondary indexes, but not for

creating spatial indexes, creating full-text indexes, or other DDL operations.

Functions

This feature is enabled by default. When an index is being created for a table, you
can obtain the index creation progress by querying the
INFORMATION_SCHEMA.INNODB_ALTER_TABLE_PROGRESS table.

Figure 2-14 Table structure

● THREAD_ID: the thread ID
● QUERY: the statement delivered by the client to create an index
● START_TIME: the time when the command for creating an index is delivered
● ELAPSED_TIME: the amount of time that has already been used

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

● ALTER_TABLE_PHASE: the current phase
● WORK_COMPLETED: the amount of work that has been completed so far
● WORK_ESTIMATED: an estimate of the total amount of work required for the

entire index creation process
● TIME_REQUIRED: an estimate of how much more time is needed
● WORK_ESTIMATED and TIME_REQUIRED will be adjusted continuously

throughout the index creation process, so they do not change linearly.

Example

Step 1 Run the following SQL statement to query the structure of a table:

desc table_name;

Example:

Query the structure of table test_stage.

desc test_stage;

Figure 2-15 Viewing the table structure

Table test_stage does not have a secondary index, as indicated by its structure.

Step 2 Run the following SQL statement to add an index for a column in the table:

ALTER TABLE table_name ADD INDEX idxa(field_name);

Example:

Add an index to column a in table test_stage.

ALTER TABLE test_stage ADD INDEX idxa(a);

Step 3 Run the following SQL statement to query the index creation progress:

SELECT QUERY, ALTER_TABLE_PHASE FROM
INFORMATION_SCHEMA.INNODB_ALTER_TABLE_PROGRESS;

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

Figure 2-16 Querying the index creation progress

----End

2.4 Backward Index Scan
Backward Index Scan eliminates the need for sorting by scanning an index in
reverse order. However, it is not compatible with other features like Index
Condition Pushdown (ICP), which can lead to decreased performance once the
optimizer selects Backward Index Scan.

To address this issue, TaurusDB allows you to enable or disable Backward Index
Scan dynamically.

Constraints
This feature is only available when the kernel version is 2.0.48.231200 or later.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

Enabling Backward Index Scan

Table 2-7 Parameter description

Parameter Level Description

optimizer_switch Global, Session Enables or disables query
optimization.
The
backward_index_scan
parameter controls
whether the optimizer
can use Backward Index
Scan. Its default value is
ON.
● ON: The optimizer

can use Backward
Index Scan.

● OFF: The optimizer
cannot use Backward
Index Scan.

You can also use hints to enable or disable Backward Index Scan. The syntax is as
follows:

● Enabling Backward Index Scan during SQL statement execution
/*+ set_var(optimizer_switch='backward_index_scan=on') */ :

● Disabling Backward Index Scan during SQL statement execution
/*+ set_var(optimizer_switch='backward_index_scan=off') */ :

Example
1. Enable Backward Index Scan.

– Set the switch value in the optimizer_switch parameter.
mysql> set optimizer_switch='backward_index_scan=on';
Query OK, 0 rows affected (0.00 sec)

mysql> set optimizer_switch='backward_index_scan=off';
Query OK, 0 rows affected (0.00 sec)

– Use hints to set the switch value in SQL statements.
mysql> explain select /*+ set_var(optimizer_switch='backward_index_scan=on') */
c13,c16 from tt where c10=10 and c7=7 and c12=12 and to_days(c13)=547864 and
c16 is not null order by c13 desc;

mysql> explain select /*+ set_var(optimizer_switch='backward_index_scan=off') */
c13,c16 from tt where c10=10 and c7=7 and c12=12 and to_days(c13)=547864 and
c16 is not null order by c13 desc;

2. Check the control effect.
Run the EXPLAIN statement to check whether the execution plan contains
Backward Index Scan.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

a. Prepare data.
create table tt(
 id int not null primary key,
 a int,
 b int,
 c int,
 key idx_a_b(a, b));
insert into tt values(1,1,1,1),(2,1,2,1),(3,2,3,2),(4,2,4,3),(5,2,4,4);

b. When Backward Index Scan is enabled, the optimizer selects this feature
to eliminate sorting. Query the optimizer_switch parameter to
determine whether this feature is enabled.
mysql> select @@optimizer_switch\G
*************************** 1. row ***************************
@@optimizer_switch:
index_merge=on,index_merge_union=on,index_merge_sort_union=on,index_merge_intersection=o
n,engine_condition_pushdown=on,index_condition_pushdown=on,mrr=on,mrr_cost_based=on,blo
ck_nested_loop=on,batched_key_access=off,materialization=on,semijoin=on,loosescan=on,firstma
tch=on,duplicateweedout=on,subquery_materialization_cost_based=on,use_index_extensions=on,
condition_fanout_filter=on,derived_merge=on,use_invisible_indexes=off,skip_scan=on,hash_join=o
n,subquery_to_derived=off,prefer_ordering_index=on,hypergraph_optimizer=off,derived_condition
_pushdown=on,derived_merge_no_subquery_check=off,gen_col_partition_prune=off,partial_result
_cache=off,offset_pushdown=off,backward_index_scan=on
1 row in set (0.00 sec)

mysql> explain select * from tt where a = 2 order by b desc;
+----+-------------+-------+------------+------+---------------+---------+---------+-------+------
+----------+---------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered |
Extra |
+----+-------------+-------+------------+------+---------------+---------+---------+-------+------
+----------+---------------------+
| 1 | SIMPLE | tt | NULL | ref | idx_a_b | idx_a_b | 5 | const | 3 | 100.00 |
Backward index scan |
+----+-------------+-------+------------+------+---------------+---------+---------+-------+------
+----------+---------------------+
1 row in set, 1 warning (0.00 sec)

c. When Backward Index Scan is disabled, the optimizer adds the Sort
operator for sorting. Check the following execution plan.
mysql> set optimizer_switch='backward_index_scan=off';
Query OK, 0 rows affected (0.00 sec)

mysql> explain select * from tt where a = 2 order by b desc;
+----+-------------+-------+------------+------+---------------+---------+---------+-------+------
+----------+----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered |
Extra |
+----+-------------+-------+------------+------+---------------+---------+---------+-------+------
+----------+----------------+
| 1 | SIMPLE | tt | NULL | ref | idx_a_b | idx_a_b | 5 | const | 3 | 100.00 |
Using filesort |
+----+-------------+-------+------------+------+---------------+---------+---------+-------+------
+----------+----------------+
1 row in set, 1 warning (0.00 sec)

Performance Test
When an SQL statement is executed, the optimizer uses Backward Index Scan. The
query takes about 4.54s.

mysql> explain analyze select detail_record_id, record_id, business_id, business_detail_id, unique_code,
create_time, creator, last_updater, last_update_time, tenant_id, is_usable, operation_time,
detail_operation_type, work_time, operator_id from detail_record d where d.tenant_id=554008 and d.creator
= 585764 and operation_type = 3 and to_days(operation_time) = to_days(now()) and detail_operation_type
is not null order by operation_time desc limit 1\G
*************************** 1. row ***************************

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

EXPLAIN: -> Limit: 1 row(s) (cost=151707.54 rows=1) (actual time=4539.137..4539.137 rows=0 loops=1)
 -> Filter: ((d.creator = 585764) and (to_days(d.operation_time) = <cache>(to_days(now()))) and
(d.detail_operation_type is not null)) (cost=151707.54 rows=263565) (actual time=4539.135..4539.135
rows=0 loops=1)
 -> Index lookup on d using idx_time (tenant_id=554008, operation_type=3; iterate backwards)
(cost=151707.54 rows=2928502) (actual time=0.089..4449.445 rows=1562755 loops=1)
1 row in set (4.54 sec)

After hints are used to prevent the optimizer from using Backward Index Scan,
there is no incompatibility issue between Backward Index Scan and index
condition pushdown in this scenario. As a result, the query time is reduced to
approximately 0.37s, and the execution efficiency is significantly improved.

mysql> explain analyze select /*+ set_var(optimizer_switch='backward_index_scan=off') */ detail_record_id,
record_id, business_id, business_detail_id, unique_code, create_time, creator, last_updater, last_update_time,
tenant_id, is_usable, operation_time, detail_operation_type, work_time, operator_id from detail_record d
where d.tenant_id=554008 and d.creator = 585764 and operation_type = 3 and to_days(operation_time) =
to_days(now()) and detail_operation_type is not null order by operation_time desc limit 1\G
*************************** 1. row ***************************
EXPLAIN: -> Limit: 1 row(s) (cost=209431.59 rows=1) (actual time=370.208..370.208 rows=0 loops=1)
 -> Sort: d.operation_time DESC, limit input to 1 row(s) per chunk (cost=209431.59 rows=2928502)
(actual time=370.207..370.207 rows=0 loops=1)
 -> Filter: ((d.creator = 585764) and (d.detail_operation_type is not null)) (actual
time=370.189..370.189 rows=0 loops=1)
 -> Index lookup on d using idx_time (tenant_id=554008, operation_type=3), with index condition:
(to_days(d.operation_time) = <cache>(to_days(now()))) (actual time=370.188..370.188 rows=0 loops=1)
1 row in set (0.37 sec)

2.5 Statement Outline
During the runtime of a MySQL instance, the execution plan of an SQL statement
often changes, causing database instability. To resolve the issue, TaurusDB
provides the Statement Outline function, which uses MySQL optimizer and index
hints to stabilize plan execution. TaurusDB also provides a group of management
interfaces (dbms_outln package) for easy use.

Prerequisites

The kernel version of your TaurusDB instance must be 2.0.42.230600 or later.

Precautions
1. Statement Outline is disabled by default. To enable it, see Enabling

Statement Outline.
2. If Statement Outline is disabled, the performance is not affected. If there are

a large number of rules after Statement Outline is enabled, the performance
deteriorates.

Description

Statement Outline supports the optimizer hints and index hints of MySQL 8.0.

● Optimizer hints
Optimizer hints are classified into Global-Level Hint, Table-Level Hint, Index-
Level Hint and Join-Order Hints based on the scope (query blocks) and Hint
objects. For details, see Optimizer Hints.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html

● Index hints
Index hints provide the optimizer with information about how to select
indexes during query processing without changing the optimizer's policy.
There are three common index hints: USE INDEX hint, IGNORE INDEX hint,
and FORCE INDEX hint. For details, see Index Hints.

Enabling Statement Outline

Step 1 Log in to the management console.

Step 2 Click in the upper left corner and select a region and project.

Step 3 Click in the upper left corner of the page and choose Databases > TaurusDB.

Step 4 On the Instances page, click the instance name to go to the Basic Information
page.

Step 5 In the navigation pane, choose Parameters.

Step 6 Search for rds_opt_outline_enabled in the search box and change its value to
ON.

Table 2-8 Parameter description

Parameter Description

rds_opt_outline_enable
d

Controls whether to enable Statement Outline.
● ON: Statement Outline is enabled.
● OFF: Statement Outline is disabled.

Step 7 Click Save.

----End

outline Table
TaurusDB has a built-in system table (outline) to store hints. This table is
automatically created when the system is started. The SQL statements for creating
the table are as follows.

CREATE TABLE `mysql`.`outline` (
 `Id` bigint(20) NOT NULL AUTO_INCREMENT,
 `Schema_name` varchar(64) COLLATE utf8_bin DEFAULT NULL,
 `Digest` varchar(64) COLLATE utf8_bin NOT NULL,
 `Digest_text` longtext COLLATE utf8_bin,
 `Type` enum('IGNORE INDEX','USE INDEX','FORCE INDEX','OPTIMIZER') CHARACTER SET utf8 COLLATE
utf8_general_ci NOT NULL,
 `Scope` enum('','FOR JOIN','FOR ORDER BY','FOR GROUP BY') CHARACTER SET utf8 COLLATE
utf8_general_ci DEFAULT '',
 `State` enum('N','Y') CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL DEFAULT 'Y',
 `Position` bigint(20) NOT NULL,
 `Hint` text COLLATE utf8_bin NOT NULL,
 PRIMARY KEY (`Id`)
) ENGINE=InnoDB
 DEFAULT CHARSET=utf8 COLLATE=utf8_bin STATS_PERSISTENT=0 COMMENT='Statement outline'

For details about the parameter description, see the following table.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

https://dev.mysql.com/doc/refman/8.0/en/index-hints.html
https://console-intl.huaweicloud.com/?locale=en-us

Table 2-9 Parameter description

Parameter Description

Id ID of the outline table.

Schema_name Database name.

Digest 64-byte hash string calculated from Digest_text during the
hash calculation.

Digest_text Digest of the SQL statement.

Type In optimizer hints, the value is OPTIMIZER.
In index hints, the value can be USE INDEX, FORCE INDEX,
or IGNORE INDEX.

Scope This field is required only for index hints. Its value can be:
● FOR GROUP BY
● FOR ORDER BY
● FOR JOIN
● An empty string

NOTE
If this field is set to an empty string, it indicates all types of
index hints.

State Whether Statement Outline is enabled. Its value can be:
● N
● Y (default value)

Position ● Optimizer hints
Sequence number of the keyword in query blocks on
which the hint is applied. Its value starts from 1. All
optimizer hints must be applied to the query block.

● Index hints
Sequence number of the table on which the hint is
applied. Its value starts from 1.

Hint ● Optimizer hints
A complete hint string, for example, /*+
MAX_EXECUTION_TIME(1000) */

● Index hints
A list of index names, for example, ind_1,ind_2

Statement Outline Management

There are six local storage rules to manage Statement Outline.

● add_optimizer_outline

Adding optimizer hints

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

– Syntax
dbms_outln.add_optimizer_outline(<Schema_name>,<Digest>,<Query_b
lock>,<Hint>,<Query>);

NO TE

You can set either Digest or Query (original SQL statement). If you set Query,
DBMS_OUTLN calculates Digest and Digest_text. You are advised to set Query
directly.

– Description

Parameter Mandat
ory

Type Description

Schema_na
me

Yes VARCHAR Name of the database to
which the statement
belongs.
This parameter can be set
to NULL or left blank, the
statement cannot be
matched.

Digest No VARCHAR Hash value of the
statement.
You can set this parameter
or Query. If you do not
want to set it to a specific
value, set it to an empty
string.

Query_bloc
k

Yes INT Position of the object to
which the hint applies.
Value range:
Greater than or equal to 1

Hint Yes VARCHAR Hint name.

Query No VARCHAR SQL statement.
● You can set either this

parameter or Digest. If
you do not want to set
it to a specific value,
set it to an empty
string.

● If both of them are set,
check whether Digest
and Query match. If
they do not match, the
parameter verification
fails and the execution
fails.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

– Example

● add_index_outline
Adding index hints
– Syntax

dbms_outln.add_index_outline(<Schema_name>,<Digest>,<Position>,<T
ype>,<Hint>,<Scope>,<Query>);

NO TE

You can set either Digest or Query (original SQL statement). If you set Query,
DBMS_OUTLN calculates Digest and Digest_text. You are advised to set Query
directly.

– Description

Parameter Mandatory Type Description

Schema_na
me

Yes VARCHAR Name of the database to
which the statement
belongs.
This parameter can be set
to NULL or left blank, the
statement cannot be
matched.

Digest No VARCHAR Hash value of the
statement.
Set either this parameter
or Query. If you do not
want to set it to a specific
value, set it to an empty
string.

Position Yes INT Position of the table to
which the index hint
applies in the statement.
The value must be
greater than or equal to
1.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

Type Yes ENUM Hint type. Its value can
be:
● OPTIMIZER
● USE INDEX
● FORCE INDEX
● IGNORE INDEX

Hint Yes VARCHAR Hint name or index name
set. Use commas (,) to
separate multiple index
names.

Scope Yes ENUM Hint scope. Its value can
be:
● FOR GROUP BY
● FOR ORDER BY
● FOR JOIN
● An empty string

Query No VARCHAR SQL statement.
● You can select either

or Digest. If you do
not want to set it to a
specific value, set it to
an empty string.

● If both of them are
set, check whether
Digest and Query
match. If they do not
match, the parameter
verification fails and
the execution fails.

– Example

call dbms_outln.add_index_outline('outline_db', '', 1, 'USE INDEX', 'ind_1', '',"select * from t1
where t1.col1 =1 and t1.col2 ='xpchild'");

● preview_outline
Querying the status of the SQL statement matching the statement outline,
which can be used for manual verification.
– Syntax

dbms_outln.preview_outline(<Schema_name>,<Query>);
– Description

Parameter Mandatory Data Type Description

Schema_nam
e

Yes VARCHAR Database name.

Query Yes VARCHAR SQL statement.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

– Example

● show_outline
Displaying the in-memory hit rate of statement outline
– Syntax

dbms_outln.show_outline();
– Example

HIT and OVERFLOW description

i. HIT indicates the number of times that the statement outline finds
the destination query block or table.

ii. OVERFLOW indicates the number of times that statement outline
does not find the destination query block or table.

● del_outline
Deleting a statement outline from the memory and table.
– Syntax

dbms_outln.del_outline(<id>);
– Description

Para
mete
r

Mandatory Type Description

id Yes INT Statement outline ID, which is
the value in the id column in
the mysql.outline table. The
value cannot be left blank.

– Example

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

Note: If the statement outline to be deleted does not exist, the system
reports a warning. You can run the show warnings; command to view
the warning content.

● flush_outline
If you modify the statement outline in the outline table, you need to make
the statement outline take effect again.
– Syntax

dbms_outln.flush_outline();
– Example

update mysql.outline set Position = 1 where Id = 18;
call dbms_outln.flush_outline();

Function Verification
To check whether the statement outline takes effect, perform the following steps:

● Use the preview_outline interface.

● Run the EXPLAIN command.

2.6 Idle Transaction Disconnection

2.6.1 Function
If an idle transaction is not committed for a long time, its rollback will consume
database resources and performance. If a large number of idle transactions are
not committed and not rolled back for a long time, the performance loss to a
database is severe especially during peak hours. TaurusDB can proactively
terminate idle transactions. Different parameters are used to control different
types of transactions. When idle transactions timed out, they are automatically
rolled back and disconnected.

NO TE

This function is supported when the kernel version is 2.0.39.230300 or later.

2.6.2 Parameter Description
mysql> show variables like '%idle%';
+------------------------------------+------+
| Variable_name | Value |
+-----------------------------------+-------+
| idle_readonly_transaction_timeout | 0 |
| idle_transaction_timeout | 0 |

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

| idle_write_transaction_timeout | 0 |
+-----------------------------------+-------+

Table 2-10 Parameter description

Parameter Level Description

idle_readonly_transa
ction_timeout

global, session Time in seconds that the server waits
for idle read-only transactions before
killing the connection.
If this parameter is set to 0, there is
not timeout threshold for idle read-
only transactions.

idle_transaction_time
out

global, session Time in seconds that the server waits
for common idle transactions before
killing the connection.
If this parameter is set to 0, there is
not timeout threshold for common idle
transactions.

idle_write_transactio
n_timeout

global, session Time in seconds that the server waits
for idle read/write transactions before
killing the connection.
If this parameter is set to 0, there is
not timeout threshold for idle read/
write transactions.

The parameters idle_readonly_transaction_timeout and
idle_write_transaction_timeout have higher priorities than the parameter
idle_transaction_timeout.

Figure 2-17 Read-only transactions

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

Figure 2-18 Read/Write transactions

2.6.3 Example
1. Set idle_transaction_timeout to 10, idle_readonly_transaction_timeout to

0, and idle_write_transaction_timeout to 0.
– Read-only transactions

mysql> begin;
Query OK, 0 rows affected (0.00 sec)

Wait for 10 seconds and run a query statement again. The following
information is displayed.
mysql> select * from t1;
ERROR 2013 (HY000): Lost connection to MySQL server during query

– Read/Write Transaction
Run the begin statement to start a transaction and run a query
statement. The following information is displayed.
mysql> select * from t1;
+---------+
| col_int |
+---------+
| 1 |
+---------+
1 row in set (0.00 sec)
mysql> begin;
Query OK, 0 rows affected (0.00 sec)

mysql> insert into t1 values(2);
Query OK, 1 row affected (0.00 sec)

Wait for 10 seconds and run a query statement again. The following
information is displayed.
mysql> select * from t1;
ERROR 2013 (HY000): Lost connection to MySQL server during query

Reconnect the transaction to the database and run a query statement. If
the following information is displayed, the transaction has been rolled
back.
mysql> select * from t1;
+---------+
| col_int |
+---------+
| 1 |
+---------+
1 row in set (0.00 sec)

2. Set idle_write_transaction_timeout to 15.
– Read/Write transactions

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

Run the begin statement to start a transaction and run a query
statement. The following information is displayed.
mysql> select * from t1;
+---------+
| col_int |
+---------+
| 2 |
+---------+
1 row in set (0.00 sec)

mysql> begin;
Query OK, 0 rows affected (0.00 sec)

mysql> insert into t1 values(3);
Query OK, 1 row affected (0.00 sec)

Wait for 15 seconds and run a query statement again. The following
information is displayed.
mysql> select * from t1;
ERROR 2013 (HY000): Lost connection to MySQL server during query

Reconnect the transaction to the database and run a query statement. If
the following information is displayed, the transaction has been rolled
back.
mysql> select * from t1;
+---------+
| col_int |
+---------+
| 2 |
+---------+
1 row in set (0.01 sec)

3. Set idle_readonly_transaction_timeout to 15.
– Read-only transactions

mysql> begin;
Query OK, 0 rows affected (0.00 sec)

Wait for 15 seconds and run a query statement again. The following
information is displayed.
mysql> select * from t1;
ERROR 2013 (HY000): Lost connection to MySQL server during query

2.7 LIMIT...OFFSET Pushdown

2.7.1 Function
In MySQL Community Edition, If you use LIMIT(N) and OFFSET(P) in a SELECT
statement, the engine layer returns all rows that meet the WHERE condition to
the SQL layer for processing. The SQL layer skip P rows of data and returns N
rows of data. When a secondary index needs to access the columns in the primary
table, the engine layer returns the table to obtain all required column information.
If OFFSET value (P) is much greater than the LIMIT value (N), the engine layer
sends a large amount of data to the SQL layer for processing.

In TaurusDB, If you use LIMIT(N) and OFFSET(P) in a SELECT statement, data is
pushed down to the engine layer for processing, speeding up queries.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

2.7.2 Usage

Table 2-11 Parameter description

Parameter Level Description

optimizer_switch Global, Session Enables or disables query optimization.
After this parameter is enabled, you can
configure offset_pushdown to enable
or disable LIMIT OFFSET pushdown.
● ON: enabled
● OFF: (default value): disabled

You can also add a HINT clause to enable or disable LIMIT OFFSET pushdown.

● OFFSET_PUSHDOWN(table_name): enabled
● NO_OFFSET_PUSHDOWN(table_name): disabled

Example:

Take a schema as an example in a TPC-H test. After LIMIT OFFSET pushdown is
enabled using the parameter or the HINT clause, Using limit-offset pushdown is
displayed in the Extra column when you run EXPLAIN SQL to view an execution
plan.

● Enabling LIMIT OFFSET pushdown by configuring offset_pushdown
mysql> EXPLAIN SELECT * FROM lineitem LIMIT 10000000,10;
+----+-------------+----------+------------+------+---------------+------+---------+------+----------+----------
+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered |
Extra |
+----+-------------+----------+------------+------+---------------+------+---------+------+----------+----------
+-----------------------+
| 1 | SIMPLE | lineitem | NULL | ALL | NULL | NULL | NULL | NULL | 59281262 | 100.00 |
Using offset pushdown |
+----+-------------+----------+------------+------+---------------+------+---------+------+----------+----------
+-----------------------+
1 row in set, 1 warning (0.00 sec)

● Enabling LIMIT OFFSET pushdown by adding a HINT clause
mysql> EXPLAIN SELECT /*+ OFFSET_PUSHDOWN() */ * FROM lineitem LIMIT 10000000,10;
+----+-------------+----------+------------+------+---------------+------+---------+------+----------+----------
+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered |
Extra |
+----+-------------+----------+------------+------+---------------+------+---------+------+----------+----------
+-----------------------+
| 1 | SIMPLE | lineitem | NULL | ALL | NULL | NULL | NULL | NULL | 59281262 | 100.00 |
Using offset pushdown |
+----+-------------+----------+------------+------+---------------+------+---------+------+----------+----------
+-----------------------+
1 row in set, 1 warning (0.00 sec)

mysql> EXPLAIN SELECT /*+ NO_OFFSET_PUSHDOWN() */ * FROM lineitem LIMIT 10000000,10;
+----+-------------+----------+------------+------+---------------+------+---------+------+----------+----------
+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+----------+------------+------+---------------+------+---------+------+----------+----------

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

+-------+
| 1 | SIMPLE | lineitem | NULL | ALL | NULL | NULL | NULL | NULL | 59281262 | 100.00 |
NULL |
+----+-------------+----------+------------+------+---------------+------+---------+------+----------+----------
+-------+
1 row in set, 1 warning (0.00 sec)

2.7.3 Performance Tests
● Run following SQL statement (Q1) with no predicate conditions to access the

primary table.
mysql> EXPLAIN SELECT * FROM lineitem LIMIT 10000000,10;
+----+-------------+----------+------------+------+---------------+------+---------+------+----------+----------
+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered |
Extra |
+----+-------------+----------+------------+------+---------------+------+---------+------+----------+----------
+-----------------------+
| 1 | SIMPLE | lineitem | NULL | ALL | NULL | NULL | NULL | NULL | 59281262 | 100.00 |
Using offset pushdown |
+----+-------------+----------+------------+------+---------------+------+---------+------+----------+----------
+-----------------------+
1 row in set, 1 warning (0.00 sec)

● Run following SQL statement (Q2) with predicate conditions to access the
secondary index (including the index range conditions). Information about
other columns needs to be obtained from the table.
mysql> EXPLAIN SELECT * FROM lineitem WHERE l_partkey > 10 AND l_partkey < 200000 LIMIT
5000000, 10;
+----+-------------+----------+------------+-------+---------------------------------+-------------+---------
+------+----------+----------+--+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref |
rows | filtered | Extra |
+----+-------------+----------+------------+-------+---------------------------------+-------------+---------
+------+----------+----------+--+
| 1 | SIMPLE | lineitem | NULL | range | i_l_partkey_suppkey,i_l_partkey | i_l_partkey | 4 |
NULL | 10949662 | 100.00 | Using offset pushdown; Using index condition |
+----+-------------+----------+------------+-------+---------------------------------+-------------+---------
+------+----------+----------+--+
1 row in set, 1 warning (0.00 sec)

● Run following SQL statement (Q3) with predicate conditions and ORDER BY
to sort data by index.
mysql> EXPLAIN SELECT * FROM lineitem WHERE l_partkey > 10 AND l_partkey < 200000 ORDER BY
l_partkey LIMIT 5000000, 10;
+----+-------------+----------+------------+-------+---------------------------------+-------------+---------
+------+----------+----------+--+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref |
rows | filtered | Extra |
+----+-------------+----------+------------+-------+---------------------------------+-------------+---------
+------+----------+----------+--+
| 1 | SIMPLE | lineitem | NULL | range | i_l_partkey_suppkey,i_l_partkey | i_l_partkey | 4 |
NULL | 10949662 | 100.00 | Using offset pushdown; Using index condition |
+----+-------------+----------+------------+-------+---------------------------------+-------------+---------
+------+----------+----------+--+
1 row in set, 1 warning (0.00 sec)

The following figure describes the performance of Q1, Q2, and Q3 when LIMIT
OFFSET pushdown is enabled and disabled in the TPC-H benchmark (10 scale).

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

Figure 2-19 Performance comparison

2.8 Conversion of IN Predicates Into Subqueries

2.8.1 Function
To execute complex queries efficiently, the TaurusDB optimizer can convert some
big IN predicates into IN subqueries. The conversion happens if the following
conditions are met:

● The kernel version of your TaurusDB instance is 2.0.42.230600 or later.
● The number of elements in the IN list exceeds the value of

rds_in_predicate_conversion_threshold.

Overview
In MySQL Community Edition, if column IN (const1, const2, ...) is executed and
there is an index on the column, the optimizer usually performs a range scan. The
parameter range_optimizer_max_mem_size controls the memory available to the
range optimizer. If there are many elements in the IN list and the used memory
exceeds the parameter value, the range scan will fail and the query performance
deteriorates. To solve this problem, you can increase the parameter value to
expand the memory that can be used. However, the memory is at the session
level. It means that each session occupies the same memory, so the instance may
be out of memory. Even if the range optimizer can be used, if the number of
elements in the IN list exceeds the eq_range_index_dive_limit value, index
statistics, instead of index dive is used. This may cause inaccurate estimation and
performance rollback. After IN predicates into subqueries, the optimizer will
continue to consider whether to convert the IN clause into a semijoin to improve
performance. A specific conversion process is as follows.

select ... from lineitem where l_partkey in (...)

====>

select ... from lineitem where l_partkey in
 (select tb._col_1 from (values (9628136),(19958441),...) tb)

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

2.8.2 Precautions

Supported Query Statements
● SELECT
● INSERT ... SELECT
● REPLACE ... SELECT
● PREPARED STMT and views

Constraints
● Only the constant IN LIST (including statements that do not involve table

queries, such as NOW() and ?) is supported.
● Stored procedures, functions, and triggers are not supported.
● NOT IN is not supported. Statements where indexes cannot be used are not

supported.

2.8.3 Usage
You can use the rds_in_predicate_conversion_threshold parameter to convert IN
predicates into subqueries.

NO TE

The default value is 0, indicating the conversion is disabled. To configure this parameter,
contact customer service.

Table 2-12 Parameter description

Parameter Level Description

rds_in_predicate_conver
sion_threshold

Global Controls the minimum number of
elements in the value list of an IN
predicate that triggers its conversion to an
IN subquery.

Example:

● Query before conversion:
mysql> explain select * from t where a in (1,2,3,4,5);
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------
+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered |
Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------
+-------------+
| 1 | SIMPLE | t | NULL | ALL | idx1 | NULL | NULL | NULL | 5 | 100.00 | Using
where |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------
+-------------+
1 row in set, 1 warning (0.00 sec)

mysql> explain format=tree select * from t where a in (1,2,3,4,5);
+---+
| EXPLAIN |

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

+---+
| -> Filter: (t.a in (1,2,3,4,5)) (cost=0.75 rows=5)
 -> Table scan on t (cost=0.75 rows=5)
 |
+---+
1 row in set (0.01 sec)

● Query after conversion:
mysql> set rds_in_predicate_conversion_threshold=3;
Query OK, 0 rows affected (0.00 sec)

mysql> explain select * from t where a in (1,2,3,4,5);
+----+-------------+------------------+------------+--------+---------------------+---------------------+---------
+----------+------+----------+-------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref
| rows | filtered | Extra |
+----+-------------+------------------+------------+--------+---------------------+---------------------+---------
+----------+------+----------+-------------------+
| 1 | SIMPLE | t | NULL | ALL | idx1 | NULL | NULL | NULL
| 5 | 100.00 | Using where |
| 1 | SIMPLE | <in_predicate_2> | NULL | eq_ref | <auto_distinct_key> | <auto_distinct_key> |
5 | test.t.a | 1 | 100.00 | IN-list converted |
+----+-------------+------------------+------------+--------+---------------------+---------------------+---------
+----------+------+----------+-------------------+
2 rows in set, 1 warning (0.00 sec)

mysql> explain format=tree select * from t where a in (1,2,3,4,5);
+---

-----------------+
|
EXPLAIN
 |
+---

-----------------+
| -> Nested loop inner join (cost=2.50 rows=5)
 -> Filter: (t.a is not null) (cost=0.75 rows=5)
 -> Table scan on t (cost=0.75 rows=5)
 -> Single-row index lookup on <in_predicate_2> using <auto_distinct_key> (a=t.a) (cost=0.27
rows=1)
 |
+---

-----------------+

EXPLAIN returns the execution plan. There is <in_predicate_*> (* indicates a
number) in the table column. It means that the table is a temporary table
that stores all data in the IN query.
You can also view in_to_subquery_conversion information in the optimize
trace.
| explain format=tree select * from t where a in (1,2,3,4,5) | {
 "steps": [
 {
 "join_preparation": {
 "select#": 1,
 "steps": [
 {
 "IN_uses_bisection": true
 },
 {
 "in_to_subquery_conversion": {
 "item": "(`t`.`a` in (1,2,3,4,5))",
 "steps": [
 {
 "creating_tmp_table": {
 "tmp_table_info": {

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

 "table": "intermediate_tmp_table",
 "columns": 1,
 "row_length": 5,
 "key_length": 5,
 "unique_constraint": false,
 "makes_grouped_rows": false,
 "cannot_insert_duplicates": true,
 "location": "TempTable"
 }
 }
 },

2.8.4 Performance Tests
sysbench is used to perform a benchmark test.

1. Prepare 10 million data records.
sysbench /usr/share/sysbench/oltp_read_only.lua --tables=1 --report-interval=10 --table-
size=10000000 --mysql-user=root --mysql-password=123456 --mysql-host=127.0.0.1 --mysql-
port=3306 --mysql-db=sbtest --time=300 --max-requests=0 --threads=200 prepare

2. Run a statement where there are 10,000 elements in IN list.
select count(*) from sbtest1 where id/k in (... ...);

The following table lists the performance comparison.

Table 2-13 Performance data

Method Function Enabled Function
Disabled (Not
Suitable for
range_opt)

Performance
Comparison

Statements using
indexes

0.09 2.48 Improved by 26.5
times

2.9 DISTINCT Optimization for Multi-Table Joins
When using multi-table joins with DISTINCT, MySQL 8.0 needs to scan the table
join results. When there is a large amount of data in base tables or when there are
many table joins, a large amount of data needs to be scanned. As a result, the
execution efficiency is low.

To improve DISTINCT query efficiency, particularly in the case of multi-table joins,
TaurusDB adds the pruning function to the optimizer to remove unnecessary
scanning branches.

Scenarios
● Nested Loop Inner Join + Distinct
● Nested Loop Outer Join + Distinct

Constraints

This feature is only available when the kernel version is 2.0.51.240300 or later.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

Enabling DISTINCT Optimization for Multi-Table Joins

Table 2-14 Parameter description

Parameter Level Description

rds_nlj_distinct_optimize Global, Session Enables or disables
DISTINCT optimization.
The default value is OFF.
● ON: DISTINCT

optimization is
enabled.

● OFF: DISTINCT
optimization is
disabled.

You can also use hints to enable or disable DISTINCT optimization. The syntax is
as follows:

● Enabling DISTINCT optimization
/*+ SET_VAR(rds_nlj_distinct_optimize=ON) */

● Disabling DISTINCT optimization
/*+ SET_VAR(rds_nlj_distinct_optimize=OFF) */

Example
1. Use either of the following methods to enable DISTINCT optimization:

– Run the SET command to set the switch value.
mysql> SET rds_nlj_distinct_optimize=ON;
Query OK, 0 rows affected (0.00 sec)

mysql> SET rds_nlj_distinct_optimize=OFF;
Query OK, 0 rows affected (0.00 sec)

– Use hints to set the switch value in SQL statements.
mysql> EXPLAIN ANALYZE SELECT/*+ SET_VAR(rds_nlj_distinct_optimize=ON) */
DISTINCT tt1.a FROM t1 AS tt1 JOIN t1 AS tt2 JOIN t1 AS tt3 ON tt2.a + 3 = tt3.a;

mysql> EXPLAIN ANALYZE SELECT/*+ SET_VAR(rds_nlj_distinct_optimize=OFF) */
DISTINCT tt1.a FROM t1 AS tt1 JOIN t1 AS tt2 JOIN t1 AS tt3 ON tt2.a + 3 = tt3.a;

2. Check the DISTINCT optimization effect in the multi-table join scenario.
Run the Explain Analyze/Explain Format=tree statement to check whether
the optimization is applied. If the execution plan contains keyword with
distinct optimization, the optimization is applied.
The detailed procedure is as follows:

a. Prepare data.
CREATE TABLE t1(a INT, KEY(a));
INSERT INTO t1 VALUES(1),(2),(5),(6),(7),(8),(9),(11);
ANALYZE TABLE t1;

b. Disable the feature and run the following SQL statements. The optimizer
chooses the default execution plan.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

mysql> SET rds_nlj_distinct_optimize=OFF;
Query OK, 0 rows affected (0.00 sec)

mysql> EXPLAIN FORMAT=TREE SELECT DISTINCT tt1.a FROM t1 AS tt1 LEFT JOIN t1
AS tt2 ON TRUE LEFT JOIN t1 AS tt3 ON tt2.a + 3 = tt3.a\G
*************************** 1. row ***************************
EXPLAIN: -> Table scan on <temporary>
 -> Temporary table with deduplication (cost=29.18 rows=64)
 -> Nested loop left join (cost=29.18 rows=64)
 -> Left hash join (no condition) (cost=6.78 rows=64)
 -> Index scan on tt1 using a (cost=1.05 rows=8)
 -> Hash
 -> Index scan on tt2 using a (cost=0.13 rows=8)
 -> Filter: ((tt2.a + 3) = tt3.a) (cost=0.25 rows=1)
 -> Index lookup on tt3 using a (a=(tt2.a + 3)) (cost=0.25 rows=1)

c. Enable the feature and run the following SQL statements. The execution
plan contains keyword with distinct optimization, which indicates that
the optimization is applied.
mysql> SET rds_nlj_distinct_optimize=ON;
Query OK, 0 rows affected (0.00 sec)

mysql> EXPLAIN FORMAT=TREE SELECT DISTINCT tt1.a FROM t1 AS tt1 LEFT JOIN t1
AS tt2 ON TRUE LEFT JOIN t1 AS tt3 ON tt2.a + 3 = tt3.a\G
*************************** 1. row ***************************
EXPLAIN: -> Table scan on <temporary>
 -> Temporary table with deduplication (cost=29.18 rows=64)
 -> Nested loop left join with distinct optimization (cost=29.18 rows=64)
 -> Left hash join (no condition) (cost=6.78 rows=64)
 -> Index scan on tt1 using a (cost=1.05 rows=8)
 -> Hash
 -> Index scan on tt2 using a (cost=0.13 rows=8)
 -> Filter: ((tt2.a + 3) = tt3.a) (cost=0.25 rows=1)
 -> Index lookup on tt3 using a (a=(tt2.a + 3)) (cost=0.25 rows=1)

Performance Test
TaurusDB completed the execution in 2.7s and scanned only about 610,000 rows
of data. This is a significant improvement in execution efficiency compared to
MySQL 8.0, which completed the execution in 186s and scanned 44 million rows
of data.

In the following example, when performing a DISTINCT operation on the results
after 7 tables were joined, MySQL 8.0.30 took 186s to execute and scanned about
44 million rows of data, while TaurusDB only took 2.7s and scanned about
610,000 rows of data.

Query statement:
select distinct ed.code,et.*
from ele_template et
left join ele_template_tenant ett on ett.template_id = et.id
left join ele_relation tm on tm.tom_id = et.id and tm.jerry_type = 'chapter'
left join ele_relation mv on mv.tom_id = tm.jerry_id and mv.jerry_type = 'variable'
left join ele_relation cv on cv.jerry_id = mv.jerry_id and cv.tom_type = 'column'
left join ele_doc_column edc on edc.id = cv.tom_id
left join ele_doc ed on ed.id = edc.doc_id
where ett.uctenantid = 'mmo0l3f8'
and ed.code = 'contract'
and et.billtype = 'contract'
order by ifnull(et.utime,et.ctime)
desc limit 0,10;

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

Execution plan:

+----+-------------+-------+------------+--------+-------------------------+-----------------+---------
+----------------------+------+----------+--+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref |
rows | filtered | Extra |
+----+-------------+-------+------------+--------+-------------------------+-----------------+---------
+----------------------+------+----------+--+
| 1 | SIMPLE | ed | NULL | ref | PRIMARY,idx_code | idx_code | 203 | const
| 1 | 100.00 | Using index; Using temporary; Using filesort |
| 1 | SIMPLE | ett | NULL | ref | PRIMARY,idx_uctenanatid | idx_uctenanatid | 203 |
const | 352 | 100.00 | Using index |
| 1 | SIMPLE | et | NULL | eq_ref | PRIMARY,idx_billtype | PRIMARY | 8 |
test.ett.template_id | 1 | 94.57 | Using where |
| 1 | SIMPLE | tm | NULL | ref | idx_tom_id,idx_jerry_id | idx_tom_id | 9 |
test.ett.template_id | 59 | 10.00 | Using index condition; Using where; Distinct |
| 1 | SIMPLE | mv | NULL | ref | idx_tom_id,idx_jerry_id | idx_tom_id | 9 |
test.tm.jerry_id | 59 | 10.00 | Using where; Distinct |
| 1 | SIMPLE | cv | NULL | ref | idx_tom_id,idx_jerry_id | idx_jerry_id | 9 | test.mv.jerry_id
| 47 | 10.00 | Using where; Distinct |
| 1 | SIMPLE | edc | NULL | eq_ref | PRIMARY,idx_doc_id | PRIMARY | 8 |
test.cv.tom_id | 1 | 50.00 | Using where; Distinct |
+----+-------------+-------+------------+--------+-------------------------+-----------------+---------
+----------------------+------+----------+--+

Figure 2-20 comparison of execution duration

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

Figure 2-21 comparison of scanned rows

2.10 Diagnosis on Large Transactions
Large transactions affect the health and stability of DB instances. In typical
scenarios, long rollbacks of large transactions prolong the upgrade and
specification change time. TaurusDB provides diagnosis for large transactions.
When there is a large transaction, an alarm is generated to notify you to commit
the transaction in a timely manner.

Prerequisites
● The kernel version is 2.0.39.230300 or later.
● The related parameter is configured based on the following conditions:

– If the kernel version is earlier than 2.0.45.230900, set the value of log-bin
is ON.

– If the kernel version is 2.0.45.230900 or later, set the value of
rds_global_sql_log_bin to ON.

Usage
1. Configure the parameter rds_warn_max_binlog_cache_size as required.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

Table 2-15 Parameter description

Parameter Level Description

rds_warn_max_binlog_c
ache_size

global Controls the maximum binlog cache
size for a transaction. If the size in a
transaction exceeds the parameter
value, a WARNING message is
reported.
Default value:
18446744073709547520
Value range: 4096 to
18446744073709547520

To prevent multiple WARNING messages from being sent to the client, a
WARNING message can be sent to the client once for each statement in a
transaction.
In this example, rds_warn_max_binlog_cache_size is set to 40960 (40 KB).
mysql> CREATE TABLE t1 (
 -> a longtext
 ->) DEFAULT CHARSET=latin1;
Query OK, 0 rows affected (0.12 sec)

mysql> show variables like 'rds_warn_max_binlog_cache_size';
+--------------------------------+-------+
| Variable_name | Value |
+--------------------------------+-------+
| rds_warn_max_binlog_cache_size | 40960 |
+--------------------------------+-------+
1 row in set (0.01 sec)

mysql> begin;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t1 VALUES (REPEAT('a',20000));
Query OK, 1 row affected (0.01 sec)

mysql> INSERT INTO t1 VALUES (REPEAT('a',20000));
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO t1 VALUES (REPEAT('a',20000));
Query OK, 1 row affected, 1 warning (0.00 sec)

mysql> show warnings;
+---------+------
+---

----+
| Level | Code | Message |
+---------+------
+---

----+
| Warning | 4008 | Recommend you to INSERT/UPDATE/DELETE rows in batches by multiple
transactions. The current transaction required more than 'rds_warn_max_binlog_cache_size' (40960)
bytes of storage. Which shall cause replication latency. Please commit it. |
+---------+------
+---

----+
1 row in set (0.00 sec)

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

mysql> select count(*) from t1;
+----------+
| count(*) |
+----------+
| 3 |
+----------+
1 row in set (0.01 sec)

mysql> commit;
Query OK, 0 rows affected (0.01 sec)

mysql> select count(*) from t1;
+----------+
| count(*) |
+----------+
| 3 |
+----------+
1 row in set (0.01 sec)

mysql> INSERT INTO t1 VALUES (REPEAT('a',50000));
Query OK, 1 row affected, 1 warning (0.01 sec)

mysql> show warnings;
+---------+------
+---
---+
| Level | Code | Message |
+---------+------
+---
---+
| Warning | 4008 | Recommend you to INSERT/UPDATE/DELETE rows in batches by multiple
transactions. The current transaction required more than 'rds_warn_max_binlog_cache_size' (40960)
bytes of storage. Which shall cause replication latency. |
+---------+------
+---
---+
1 row in set (0.00 sec)

2. Check the binlog cache size of the transactions in the current connection.
mysql> CREATE TABLE t1 (
-> a longtext
->) ENGINE=InnoDB DEFAULT CHARSET=latin1;
Query OK, 0 rows affected (0.10 sec)

mysql> SHOW STATUS LIKE 'Rds_binlog_trx_cache_size';
+---------------------------+-------+
| Variable_name | Value |
+---------------------------+-------+
| Rds_binlog_trx_cache_size | 0 |
+---------------------------+-------+
1 row in set (0.04 sec)

mysql> begin;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t1 VALUES (REPEAT('a',20000));
Query OK, 1 row affected (0.01 sec)

mysql> SHOW STATUS LIKE 'Rds_binlog_trx_cache_size';
+---------------------------+-------+
| Variable_name | Value |
+---------------------------+-------+
| Rds_binlog_trx_cache_size | 20150 |
+---------------------------+-------+
1 row in set (0.05 sec)
mysql> commit;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW STATUS LIKE 'Rds_binlog_trx_cache_size';

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

+---------------------------+-------+
| Variable_name | Value |
+---------------------------+-------+
| Rds_binlog_trx_cache_size | 0 |
+---------------------------+-------+
1 row in set (0.09 sec)

3. Check the binlog cache size of transactions in all connections.
mysql> SHOW GLOBAL STATUS LIKE 'rds_binlog_trx_cache_size';
+---------------------------+-------+
| Variable_name | Value |
+---------------------------+-------+
| Rds_binlog_trx_cache_size | 40300 |
+---------------------------+-------+
1 row in set (0.05 sec)

2.11 Enhanced Partitioned Tables

2.11.1 Subpartitioning

2.11.1.1 Overview
TaurusDB partitioned tables are fully compatible with the syntax and functions of
MySQL Community Edition. Compared with MySQL Community Edition, TaurusDB
provides more functions in terms of partitioned tables. It supports more partition
types and combinations, and allows you to use partitioned tables easily and
efficiently.

TaurusDB is compatible with the following MySQL partition types:

● HASH
● KEY
● RANGE
● LIST
● RANGE-HASH
● RANGE-KEY
● LIST-HASH
● LIST-KEY

A composite partition comprises both partitions and subpartitions.

TaurusDB supports the following composite partition types:

● RANGE-RANGE
● RANGE-LIST
● LIST-RANGE
● LIST-LIST
● HASH-HASH
● HASH-KEY
● HASH-RANGE
● HASH-LIST

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

● KEY-KEY

● KEY-HASH

● KEY-RANGE

● KEY-LIST

2.11.1.2 Precautions
● The kernel version of your TaurusDB instance must be 2.0.48.231200 or later.

● To use extended partition types, submit an application by choosing Service
Tickets > Create Service Ticket in the upper right corner of the management
console.

2.11.1.3 RANGE-RANGE

Constraints
● The RANGE type requires that the partition key value or value_list defined

for each partition be monotonically increasing.

● MAXVALUE must be at the end.

● The NULL value is considered to be infinitely small. It is always inserted into
the first partition definition.

● A subpartition in each partition can be considered as a new RANGE partition.
All rules and constraints are the same as those of RANGE partitions.

Syntax

The following statement is used to create one or more RANGE-RANGE partitioned
tables where each partition may contain one or more RANGE subpartitions:

CREATE TABLE ... PARTITION BY RANGE {(expr) | COLUMNS(column_list)}
 SUBPARTITION BY RANGE {(expr) | COLUMNS(column_list)}
[(partition_definition [, partition_definition] ...)];

partition_definition is:

PARTITION partition_name
 VALUES LESS THAN {(value | MAXVALUE | value_list) | MAXVALUE}
[(subpartition_definition [, subpartition_definition] ...)]

subpartition_definition is:

SUBPARTITION subpartition_name
 VALUES LESS THAN {value | value_list | MAXVALUE}

Table 2-16 Parameters

Parameter Description

expr The expression of the partition. Currently, only the INT type
is supported.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

https://console-intl.huaweicloud.com/en-us/ticket/?region=ap-southeast-1&locale=en-us#/ticketindex/createIndex
https://console-intl.huaweicloud.com/en-us/ticket/?region=ap-southeast-1&locale=en-us#/ticketindex/createIndex

Parameter Description

column_list The list of partition key columns. It is used in RANGE
COLUMNS(). Expressions are not supported. Multiple
columns are supported.

value The boundary value of the partition.

value_list The list of the values of the partition key columns. It is
used in RANGE COLUMNS().

MAXVALUE The maximum value of the partition.

partition_name The name of the partition. The name must be unique
within the table.

subpartition_nam
e

The name of the subpartition. The name must be unique
within the table.

Examples
● Create a RANGE-RANGE partitioned table:

CREATE TABLE tbl_range_range (col1 INT, col2 INT, col3 varchar(20))
PARTITION BY RANGE(col1)
SUBPARTITION BY RANGE(col2)
(
 PARTITION p0 VALUES LESS THAN (1000) (
 SUBPARTITION s0 VALUES LESS THAN(100),
 SUBPARTITION s1 VALUES LESS THAN(MAXVALUE)
),
 PARTITION p1 VALUES LESS THAN (2000)
 (
 SUBPARTITION s2 VALUES LESS THAN(100),
 SUBPARTITION s3 VALUES LESS THAN(200)
),
 PARTITION p2 VALUES LESS THAN (MAXVALUE)
 (
 SUBPARTITION s4 VALUES LESS THAN(200),
 SUBPARTITION s5 VALUES LESS THAN(400)
)
);

● Create a RANGE COLUMNS-RANGE partitioned table:
CREATE TABLE tbl_range_col_range (col1 INT, col2 INT, col3 INT)
PARTITION BY RANGE COLUMNS(col1, col2)
SUBPARTITION BY RANGE(col3)
(
 PARTITION p1 VALUES LESS THAN(1000, MAXVALUE)(
 SUBPARTITION s0 VALUES LESS THAN(100),
 SUBPARTITION s1 VALUES LESS THAN(MAXVALUE)
),
 PARTITION p2 VALUES LESS THAN(2000, MAXVALUE)(
 SUBPARTITION s2 VALUES LESS THAN(100),
 SUBPARTITION s3 VALUES LESS THAN(200)
),
 PARTITION p3 VALUES LESS THAN(MAXVALUE, MAXVALUE)(
 SUBPARTITION s4 VALUES LESS THAN(200),
 SUBPARTITION s5 VALUES LESS THAN(400)

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

)
);

2.11.1.4 RANGE-LIST

Constraints
● The LIST type requires that value or value_list in the same or different

partition definitions be unique.
● You can only insert or query the NULL value when it is contained in value.

Otherwise, the NULL value does not comply with definitions and cannot be
inserted.

● A subpartition in each partition can be considered as a new LIST partition. All
rules and constraints are the same as those of LIST partitions. The definitions
of subpartitions in different partitions can be different.

Syntax

The following statement is used to create one or more RANGE-LIST partitioned
tables where each partition may contain one or more subpartitions:

CREATE TABLE ... PARTITION BY RANGE {(expr) | COLUMNS(column_list)}
 SUBPARTITION BY LIST {(expr) | COLUMNS(column_list)}
[(partition_definition [, partition_definition] ...)];

partition_definition is:

PARTITION partition_name
 VALUES LESS THAN {(value | value_list) | MAXVALUE}
[(subpartition_definition [, subpartition_definition] ...)]

subpartition_definition is:

SUBPARTITION subpartition_name
 VALUES IN {(value | value_list)}

Table 2-17 Parameters

Parameter Description

expr The expression of the partition. Currently, only the INT type
is supported.

column_list The list of partition key columns. It is used in RANGE
COLUMNS(). Expressions are not supported. Multiple
columns are supported.

value The boundary value of the partition.

value_list The list of the values of the partition key columns. It is
used in RANGE COLUMNS().

MAXVALUE The maximum value of the partition.

partition_name The name of the partition. The name must be unique
within the table.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

Parameter Description

subpartition_nam
e

The name of the subpartition. The name must be unique
within the table.

Examples
● Create a RANGE-LIST partitioned table:

CREATE TABLE tbl_range_list (col1 INT, col2 INT, col3 varchar(20))
PARTITION BY RANGE(col1)
 SUBPARTITION BY LIST(col2)
(
 PARTITION m1 VALUES LESS THAN(1000) (
 SUBPARTITION p0 VALUES in (1, 2),
 SUBPARTITION p1 VALUES in (3, 4),
 SUBPARTITION p2 VALUES in (5, 6)
),
 PARTITION m2 VALUES LESS THAN(2000) (
 SUBPARTITION p3 VALUES in (1, 2),
 SUBPARTITION p4 VALUES in (3, 4),
 SUBPARTITION p5 VALUES in (5, 6)
),
 PARTITION m3 VALUES LESS THAN(MAXVALUE) (
 SUBPARTITION p6 VALUES in (1, 2),
 SUBPARTITION p7 VALUES in (3, 4),
 SUBPARTITION p8 VALUES in (5, 6)
)
);

● Create a RANGE COLUMNS-LIST partitioned table:
CREATE TABLE tbl_range_columns_list
(
 col1 INT,
 col2 INT,
 col3 varchar(20),
 col4 DATE
)
PARTITION BY RANGE COLUMNS(col4)
 SUBPARTITION BY LIST(col1)
(
 PARTITION dp1 VALUES LESS THAN('2023-01-01')(
 SUBPARTITION p0 VALUES in (1, 2),
 SUBPARTITION p1 VALUES in (3, 4),
 SUBPARTITION p2 VALUES in (5, 6)
),
 PARTITION dp2 VALUES LESS THAN('2024-01-01')(
 SUBPARTITION p3 VALUES in (1, 2),
 SUBPARTITION p4 VALUES in (3, 4),
 SUBPARTITION p5 VALUES in (5, 6)
),
 PARTITION dp3 VALUES LESS THAN('2025-01-01')(
 SUBPARTITION p6 VALUES in (1, 2),
 SUBPARTITION p7 VALUES in (3, 4),
 SUBPARTITION p8 VALUES in (5, 6)
)
);

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

2.11.1.5 LIST-RANGE

Constraints
● The LIST type requires that value or value_list in the same or different

partition definitions be unique.
● You can only insert or query the NULL value when it is contained in value.

Otherwise, the NULL value does not comply with definitions and cannot be
inserted.

● A subpartition in each partition can be considered as a new LIST partition. All
rules and constraints are the same as those of LIST partitions. The definitions
of subpartitions in different partitions can be different.

Syntax

The following statement is used to create one or more LIST-RANGE partitioned
tables where each partition may contain one or more subpartitions:

CREATE TABLE [schema.]table_name
 table_definition
 PARTITION BY LIST {(expr) | COLUMNS(column_list)}
 SUBPARTITION BY RANGE {(expr) | COLUMNS(column_list)}
 (partition_definition [, partition_definition] ...);

partition_definition is:

PARTITION partition_name VALUES IN (value_list)
 (subpartition_definition [, subpartition_definition] ...)

subpartition_definition is:

SUBPARTITION subpartition_name VALUES LESS THAN {value | value_list | MAXVALUE}

Table 2-18 Parameters

Parameter Description

expr The expression of the partition. Currently, only the INT type
is supported.

column_list The list of partition key columns. It is used in LIST
COLUMNS(). Expressions are not supported.

value The boundary value of the partition.

value_list The list of the values of the partition key columns. It is
used in LIST COLUMNS().

MAXVALUE The maximum value of the partition.

partition_name The name of the partition. The name must be unique
within the table.

subpartition_nam
e

The name of the subpartition. The name must be unique
within the table.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

Examples
● Create a LIST-RANGE partitioned table:

CREATE TABLE tbl_list_range
(
 col1 INT,
 col2 INT,
 col3 varchar(20),
 col4 DATE
)
PARTITION BY LIST (col1)
SUBPARTITION BY RANGE(col2)
(
 PARTITION p0 VALUES in (1, 2)(
 SUBPARTITION s0 VALUES LESS THAN(1000),
 SUBPARTITION s1 VALUES LESS THAN(2000)
),
 PARTITION p1 VALUES in (3, 4)(
 SUBPARTITION s2 VALUES LESS THAN(1000),
 SUBPARTITION s3 VALUES LESS THAN(MAXVALUE)
),
 PARTITION p2 VALUES in (5, 6)(
 SUBPARTITION s4 VALUES LESS THAN(3000),
 SUBPARTITION s5 VALUES LESS THAN(MAXVALUE)
)
);

● Create a LIST COLUMNS-RANGE partitioned table:
CREATE TABLE tbl_list_columns_range
(
 col1 INT,
 col2 INT,
 col3 varchar(20),
 col4 DATE
)
PARTITION BY LIST COLUMNS(col3)
SUBPARTITION BY RANGE(month(col4))
(
 PARTITION europe VALUES in ('FRANCE', 'ITALY')(
 SUBPARTITION q1_2012 VALUES LESS THAN(4),
 SUBPARTITION q2_2012 VALUES LESS THAN(7)
),
 PARTITION asia VALUES in ('INDIA', 'PAKISTAN')(
 SUBPARTITION q1_2013 VALUES LESS THAN(4),
 SUBPARTITION q2_2013 VALUES LESS THAN(7)
),
 PARTITION americas VALUES in ('US', 'CANADA')(
 SUBPARTITION q1_2014 VALUES LESS THAN(4),
 SUBPARTITION q2_2014 VALUES LESS THAN(7)
)
);

2.11.1.6 LIST-LIST

Syntax
The following statement is used to create one or more LIST-LIST partitioned tables
where each partition may contain one or more subpartitions:

CREATE TABLE [schema.]table_name
 table_definition

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

 PARTITION BY LIST {(expr) | COLUMNS(column_list)}
 SUBPARTITION BY LIST {(expr) | COLUMNS(column_list)}
 (partition_definition [, partition_definition] ...);

partition_definition is:

PARTITION partition_name VALUES IN (value_list)
 (subpartition_definition [, subpartition_definition] ...)

subpartition_definition is:

SUBPARTITION subpartition_name VALUES IN (value_list)

Table 2-19 Parameters

Parameter Description

table_name The name of the table to be created.

expr The expression of the partition. Currently, only the INT type
is supported.

column_list The list of partition key columns. It is used in LIST
COLUMNS(). Expressions are not supported.

value_list The list of the values of the partition key columns. It is
used in LIST COLUMNS().

partition_name The name of the partition. The name must be unique
within the table.

subpartition_nam
e

The name of the subpartition. The name must be unique
within the table.

Examples
● Create a LIST-LIST partitioned table:

CREATE TABLE tbl_list_list
(
 col1 INT,
 col2 INT,
 col3 varchar(20),
 col4 DATE
)
PARTITION BY LIST (col1)
SUBPARTITION BY LIST (col2)
(
 PARTITION p0 VALUES in (1, 2)(
 SUBPARTITION partno0 VALUES in (1, 2),
 SUBPARTITION partno1 VALUES in (3, 4),
 SUBPARTITION partno2 VALUES in (5, 6)
),
 PARTITION p1 VALUES in (3, 4)(
 SUBPARTITION partno3 VALUES in (1, 2),
 SUBPARTITION partno4 VALUES in (3, 4),
 SUBPARTITION partno5 VALUES in (5, 6)
),
 PARTITION p2 VALUES in (5, 6)(
 SUBPARTITION partno6 VALUES in (1, 2),

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

 SUBPARTITION partno7 VALUES in (3, 4),
 SUBPARTITION partno8 VALUES in (5, 6)
)
);

● Create a LIST COLUMNS-LIST partitioned table:
CREATE TABLE tbl_list_columns_list
(
 col1 INT,
 col2 INT,
 col3 varchar(20),
 col4 DATE
)
PARTITION BY LIST COLUMNS(col3)
SUBPARTITION BY LIST (col1)
(
 PARTITION europe VALUES in ('FRANCE', 'ITALY')(
 SUBPARTITION p0 VALUES in (1, 2),
 SUBPARTITION p1 VALUES in (3, 4),
 SUBPARTITION p2 VALUES in (5, 6)
),
 PARTITION asia VALUES in ('INDIA', 'PAKISTAN')(
 SUBPARTITION p3 VALUES in (1, 2),
 SUBPARTITION p4 VALUES in (3, 4),
 SUBPARTITION p5 VALUES in (5, 6)
),
 PARTITION americas VALUES in ('US', 'CANADA')(
 SUBPARTITION p6 VALUES in (1, 2),
 SUBPARTITION p7 VALUES in (3, 4),
 SUBPARTITION p8 VALUES in (5, 6)
)
);

2.11.1.7 HASH-HASH

Constraints
● The definitions of a HASH partitioned table can be omitted. If PARTITIONS

num is specified, that exact number of partition definitions are created.
Otherwise, one partition definition is created by default.

● If you want to omit definitions of subpartitions, ensure that no definition is
provided for any of the subpartitions. Otherwise, you need to specify the
partition definition for each subpartition.

Syntax
The following statement is used to create one or more HASH-HASH partitioned
tables where each partition may contain one or more subpartitions:

CREATE TABLE [schema.]table_name
 table_definition
 PARTITION BY [LINEAR] HASH(expr) [PARTITIONS num]
 SUBPARTITION BY [LINEAR] HASH(expr) [SUBPARTITIONS sub_num]
 [partition_definition [, partition_definition] ...];

partition_definition is:

PARTITION partition_name
 (subpartition_definition [, subpartition_definition] ...)

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

subpartition_definition is:

SUBPARTITION subpartition_name

Table 2-20 Parameters

Parameter Description

table_name The name of the table to be created.

expr The expression of the partition. Currently, only the INT type
is supported.

num The number of partitions. It is only valid for HASH or KEY
partitions.

sub_num The number of subpartitions. It is only valid for HASH or
KEY subpartitions.

partition_name The name of the partition. The name must be unique
within the table.

subpartition_nam
e

The name of the subpartition. The name must be unique
within the table.

Example

Create a HASH-HASH partitioned table:
CREATE TABLE tbl_hash_hash
(
 col1 INT,
 col2 INT,
 col3 varchar(20),
 col4 DATE
)
PARTITION BY HASH(col1) PARTITIONS 9
 SUBPARTITION BY HASH(col2) SUBPARTITIONS 3;

2.11.1.8 HASH-KEY

Constraints
● The definitions of a KEY partitioned table can be omitted. If PARTITIONS

num is specified, that exact number of partition definitions are created.
Otherwise, one partition definition is created by default.

● If you want to omit definitions of subpartitions, ensure that no definition is
provided for any of the subpartitions. Otherwise, you need to specify the
partition definition for each subpartition.

Syntax

The following statement is used to create one or more HASH-KEY partitioned
tables where each partition may contain one or more subpartitions:

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

CREATE TABLE [schema.]table_name
 table_definition
 PARTITION BY [LINEAR] HASH(expr) [PARTITIONS num]
 SUBPARTITION BY [LINEAR] KEY(expr) [SUBPARTITIONS sub_num]
 (partition_definition [, partition_definition] ...);

partition_definition is:

PARTITION partition_name
 (subpartition_definition [, subpartition_definition] ...)

subpartition_definition is:

SUBPARTITION subpartition_name

Table 2-21 Parameters

Parameter Description

table_name The name of the table to be created.

expr The expression of the partition. Currently, only the INT type
is supported.

partition_name The name of the partition. The name must be unique
within the table.

subpartition_nam
e

The name of the subpartition. The name must be unique
within the table.

Example
Create a HASH-KEY partitioned table:
CREATE TABLE tbl_hash_key
(
 col1 INT,
 col2 INT,
 col3 varchar(20),
 col4 DATE
)
PARTITION BY HASH(col1) PARTITIONS 3
 SUBPARTITION BY KEY(col3) SUBPARTITIONS 2;

2.11.1.9 HASH-RANGE

Syntax
The following statement is used to create one or more HASH-RANGE partitioned
tables where each partition may contain one or more subpartitions:

CREATE TABLE [schema.]table_name
 table_definition
 PARTITION BY [LINEAR] HASH(expr)
 SUBPARTITION BY RANGE {(expr) | COLUMNS(column_list)}
 (partition_definition [, partition_definition] ...);

partition_definition is:

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

PARTITION partition_name
 (subpartition_definition [, subpartition_definition] ...)

subpartition_definition is:

SUBPARTITION subpartition_name VALUES LESS THAN {value | valuse_list | MAXVALUE}

Table 2-22 Parameters

Parameter Description

table_name The name of the table to be created.

expr The expression of the partition. Currently, only the INT type
is supported.

column_list The list of partition key columns. It is used in LIST
COLUMNS(). Expressions are not supported.

value The boundary value of the partition.

value_list The list of the values of the partition key columns. It is
used in LIST COLUMNS().

MAXVALUE The maximum value of the partition.

partition_name
subpartition_nam
e

The name of the partition. The name must be unique
within the table.
The name of the subpartition. The name must be unique
within the table.

Example
Create a HASH-RANGE partitioned table:

CREATE TABLE tbl_hash_range
(
 col1 INT,
 col2 INT,
 col3 varchar(20),
 col4 DATE
)
PARTITION BY HASH(col1)
SUBPARTITION BY RANGE(col2)
(
 PARTITION p0 (
 SUBPARTITION s0 VALUES LESS THAN(4),
 SUBPARTITION s1 VALUES LESS THAN(7),
 SUBPARTITION s2 VALUES LESS THAN(10),
 SUBPARTITION s3 VALUES LESS THAN(13)
),
 PARTITION p1
 (
 SUBPARTITION s4 VALUES LESS THAN(4),
 SUBPARTITION s5 VALUES LESS THAN(7),
 SUBPARTITION s6 VALUES LESS THAN(10),
 SUBPARTITION s7 VALUES LESS THAN(13)
),

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

 PARTITION p2
 (
 SUBPARTITION s8 VALUES LESS THAN(4),
 SUBPARTITION s9 VALUES LESS THAN(7),
 SUBPARTITION s10 VALUES LESS THAN(10),
 SUBPARTITION s11 VALUES LESS THAN(13)
)
);

2.11.1.10 HASH-LIST

Syntax
The following statement is used to create one or more HASH-LIST partitioned
tables where each partition may contain one or more subpartitions:

CREATE TABLE [schema.]table_name
 table_definition
 PARTITION BY [LINEAR] HASH(expr)
 SUBPARTITION BY LIST {(expr) | COLUMNS(column_list)}
 (partition_definition [, partition_definition] ...);

partition_definition is:

PARTITION partition_name
 (subpartition_definition [, subpartition_definition] ...)

subpartition_definition is:

SUBPARTITION subpartition_name VALUES IN (value_list)

Table 2-23 Parameters

Parameter Description

table_name The name of the table to be created.

expr The expression of the partition. Currently, only the INT type
is supported.

column_list The list of partition key columns. It is used in LIST
COLUMNS(). Expressions are not supported.

value_list The list of the values of the partition key columns. It is
used in LIST COLUMNS().

partition_name The name of the partition. The name must be unique
within the table.

subpartition_nam
e

The name of the subpartition. The name must be unique
within the table.

Example
Create a HASH-LIST partitioned table:
CREATE TABLE tbl_hash_list
(

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

 col1 INT,
 col2 INT,
 col3 varchar(20),
 col4 DATE
)
PARTITION BY HASH(col1)
SUBPARTITION BY LIST(col2)
(
 PARTITION dp0 (
 SUBPARTITION p0 VALUES in (1, 2),
 SUBPARTITION p1 VALUES in (3, 4),
 SUBPARTITION p2 VALUES in (5, 6)
),
 PARTITION dp1
 (
 SUBPARTITION p3 VALUES in (1, 2),
 SUBPARTITION p4 VALUES in (3, 4),
 SUBPARTITION p5 VALUES in (5, 6)
),
 PARTITION dp2
 (
 SUBPARTITION p6 VALUES in (1, 2),
 SUBPARTITION p7 VALUES in (3, 4),
 SUBPARTITION p8 VALUES in (5, 6)
)
);

2.11.1.11 KEY-HASH

Syntax

The following statement is used to create one or more KEY-HASH partitioned
tables where each partition may contain one or more subpartitions:

CREATE TABLE [schema.]table_name
 table_definition
 PARTITION BY [LINEAR] KEY(expr) [PARTITIONS num]
 SUBPARTITION BY [LINEAR] HASH(expr) [SUBPARTITIONS sub_num]
 (partition_definition [, partition_definition] ...);

partition_definition is:

PARTITION partition_name
 (subpartition_definition [, subpartition_definition] ...)

subpartition_definition is:

SUBPARTITION subpartition_name

Table 2-24 Parameters

Parameter Description

table_name The name of the table to be created.

expr The expression of the partition. Currently, only the INT type
is supported.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

Parameter Description

partition_name The name of the partition. The name must be unique
within the table.

subpartition_nam
e

The name of the subpartition. The name must be unique
within the table.

Example

Create a KEY-HASH partitioned table:

CREATE TABLE tbl_key_hash
(
 col1 INT,
 col2 INT,
 col3 varchar(20),
 col4 DATE
)
PARTITION BY KEY(col1) PARTITIONS 3
 SUBPARTITION BY HASH(col2) SUBPARTITIONS 2;

2.11.1.12 KEY-KEY

Syntax

The following statement is used to create one or more KEY-KEY partitioned tables
where each partition may contain one or more subpartitions:

CREATE TABLE [schema.]table_name
 table_definition
 PARTITION BY [LINEAR] KEY(expr) [PARTITIONS num]
 SUBPARTITION BY [LINEAR] KEY(expr) [SUBPARTITIONS sub_num]
 (partition_definition [, partition_definition] ...);

partition_definition is:

PARTITION partition_name
 (subpartition_definition [, subpartition_definition] ...)

subpartition_definition is:

SUBPARTITION subpartition_name

Table 2-25 Parameters

Parameter Description

table_name The name of the table to be created.

expr The expression of the partition. Currently, only the INT type
is supported.

partition_name The name of the partition. The name must be unique
within the table.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

Parameter Description

subpartition_nam
e

The name of the subpartition. The name must be unique
within the table.

Example

Create a KEY-KEY partitioned table:

CREATE TABLE tbl_key_key
(
 col1 INT,
 col2 INT,
 col3 varchar(20),
 col4 DATE
)
PARTITION BY KEY(col1) PARTITIONS 3
 SUBPARTITION BY KEY(col2) SUBPARTITIONS 2;

2.11.1.13 KEY-RANGE

Syntax

The following statement is used to create one or more KEY-RANGE partitioned
tables where each partition may contain one or more subpartitions:

CREATE TABLE [schema.]table_name
 table_definition
 PARTITION BY [LINEAR] KEY (column_list)
 SUBPARTITION BY RANGE {(expr) | COLUMNS(column_list)}
 (partition_definition [, partition_definition] ...);

partition_definition is:

PARTITION partition_name
 (subpartition_definition [, subpartition_definition] ...)

subpartition_definition is:

SUBPARTITION subpartition_name
 VALUES LESS THAN {value | value_list | MAXVALUE}

Table 2-26 Parameters

Parameter Description

table_name The name of the table to be created.

expr The expression of the partition. Currently, only the INT type
is supported.

column_list The list of partition key columns. It is used in RANGE
COLUMNS(). Expressions are not supported.

value The boundary value of the partition.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

Parameter Description

value_list The list of the values of the partition key columns. It is
used in LIST COLUMNS().

MAXVALUE The maximum value of the partition.

partition_name
subpartition_nam
e

The name of the partition. The name must be unique
within the table.
The name of the subpartition. The name must be unique
within the table.

Example
Create a KEY-RANGE partitioned table:

CREATE TABLE tbl_key_range
(
 col1 INT,
 col2 INT,
 col3 varchar(20),
 col4 DATE
)
PARTITION BY KEY(col1)
 SUBPARTITION BY RANGE COLUMNS(col4)
(
 PARTITION p0(
 SUBPARTITION p0_q1_2023 VALUES LESS THAN('2023-04-01'),
 SUBPARTITION p0_q2_2023 VALUES LESS THAN('2023-07-01'),
 SUBPARTITION p0_q3_2023 VALUES LESS THAN('2023-10-01'),
 SUBPARTITION p0_q4_2023 VALUES LESS THAN('2024-01-01')
),
 PARTITION p1(
 SUBPARTITION p1_q1_2023 VALUES LESS THAN('2023-04-01'),
 SUBPARTITION p1_q2_2023 VALUES LESS THAN('2023-07-01'),
 SUBPARTITION p1_q3_2023 VALUES LESS THAN('2023-10-01'),
 SUBPARTITION p1_q4_2023 VALUES LESS THAN('2024-01-01')
),
 PARTITION p2(
 SUBPARTITION p2_q1_2023 VALUES LESS THAN('2023-04-01'),
 SUBPARTITION p2_q2_2023 VALUES LESS THAN('2023-07-01'),
 SUBPARTITION p2_q3_2023 VALUES LESS THAN('2023-10-01'),
 SUBPARTITION p2_q4_2023 VALUES LESS THAN('2024-01-01')
)
);

2.11.1.14 KEY-LIST

Syntax
The following statement is used to create one or more KEY-LIST partitioned tables
where each partition may contain one or more subpartitions:

CREATE TABLE [schema.]table_name
 table_definition
 PARTITION BY [LINEAR] KEY(expr)

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

 SUBPARTITION BY LIST {(expr) | COLUMNS(column_list)}
 (partition_definition [, partition_definition] ...);

partition_definition is:

PARTITION partition_name
 (subpartition_definition [, subpartition_definition] ...)

subpartition_definition is:

SUBPARTITION subpartition_name VALUES IN (value_list)

Table 2-27 Parameters

Parameter Description

table_name The name of the table to be created.

expr The expression of the partition. Currently, only the INT type
is supported.

column_list The list of partition key columns. It is used in LIST
COLUMNS(). Expressions are not supported.

value_list The values of the partition.

partition_name The name of the partition. The name must be unique
within the table.

subpartition_nam
e

The name of the subpartition. The name must be unique
within the table.

Example
Create a KEY-LIST partitioned table:

CREATE TABLE tbl_key_list
(
 col1 INT,
 col2 INT,
 col3 varchar(20),
 col4 DATE
)
PARTITION BY KEY(col1)
SUBPARTITION BY LIST(col2)
(
 PARTITION dp0 (
 SUBPARTITION p0 VALUES in (1, 2),
 SUBPARTITION p1 VALUES in (3, 4),
 SUBPARTITION p2 VALUES in (5, 6)
),
 PARTITION dp1
 (
 SUBPARTITION p3 VALUES in (1, 2),
 SUBPARTITION p4 VALUES in (3, 4),
 SUBPARTITION p5 VALUES in (5, 6)
),
 PARTITION dp2
 (

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

 SUBPARTITION p6 VALUES in (1, 2),
 SUBPARTITION p7 VALUES in (3, 4),
 SUBPARTITION p8 VALUES in (5, 6)
)
);

2.11.2 LIST DEFAULT HASH
TaurusDB supports two partition types at the same level: LIST and HASH. Data is
first inserted into LIST partitions. Data that does not comply with the LIST
partitioning rules is placed in the default partition. If the default partition has
multiple partitions, HASH rules are used. LIST DEFAULT HASH partitioned tables
are usually used in scenarios where LIST VALUES are unevenly distributed and
cannot be fully enumerated.

Prerequisites
● The kernel version of your TaurusDB instance must be 2.0.54.240600 or later.
● rds_list_default_partition_enabled has been set to ON.

Constraints
● You can create one or more DEFAULT partitions.
● You can create LIST and DEFAULT subpartitions together, but each partition

can only have one DEFAULT subpartition.
● If there is only one DEFAULT partition, subpartitions can be of any types.
● If there are multiple DEFAULT partitions, only HASH or KEY subpartitions are

supported.

Parameters
To enable or disable LIST DEFAULT HASH, configure
rds_list_default_partition_enabled on the Parameters page.

Table 2-28 Parameter description

Parameter Level Description

rds_list_default_partition
_enabled

Global Enables or disables LIST
DEFAULT HASH.
Value:
● ON: LIST DEFAULT

HASH is enabled.
● OFF: LIST DEFAULT

HASH is disabled.

Creating a LIST DEFAULT HASH Partitioned Table
● Syntax

CREATE TABLE [schema.]table_name
 table_definition

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

 PARTITION BY LIST [COLUMNS] (expr)
 SUBPARTITION BY ...
 (list_partition_definition[, ..., list_partition_definition],
 default_partition_definition
)

default_partition_definition is:
PARTITION partition_name DEFAULT [PARTITIONS number]

The definition of each partition can also contain subpartitions. Subpartitions
can also use LIST DEFAULT. The definition is as follows:
SUBPARTITION subpartition_name DEFAULT

Table 2-29 Parameter description

Parameter Description

table_name The name of the table to be created.

partition_name ● The name of the partition if there is only one DEFAULT
partition. The name must be unique.

● The prefix of a partition name if there are multiple
DEFAULT partitions. The partition name is in the
format of partition_name+sequence_number.

subpartition_n
ame

The name of the subpartition. The name must be unique
within a table. Only one DEFAULT subpartition is
supported.

number The number of DEFAULT partitions. You can create
multiple DEFAULT partitions based on HASH rules. This
parameter is optional. If you do not specify it, a DEFAULT
partition is created.

● Examples

Create a single DEFAULT partition:
CREATE TABLE list_default_tbl (
 a INT,
 b INT
)
PARTITION BY LIST (a)
(PARTITION p0 VALUES IN (1,2,3,4,5),
 PARTITION p1 VALUES IN (6,7,8,9,10),
 PARTITION pd DEFAULT);

Create multiple DEFAULT partitions:
CREATE TABLE list_default_hash (
 a INT,
 b INT
)
PARTITION BY LIST (a)
(PARTITION p0 VALUES IN (1,2,3,4,5),
 PARTITION p1 VALUES IN (6,7,8,9,10),
 PARTITION pd DEFAULT PARTITIONS 3);

Use LIST COLUMNS:
CREATE TABLE t_goods
(

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

 country VARCHAR(30),
 year VARCHAR(60),
 goods TEXT
) PARTITION BY LIST COLUMNS(country)
(
 PARTITION p1 VALUES IN ('China'),
 PARTITION p2 VALUES IN ('USA'),
 PARTITION p3 VALUES IN ('Asia'),
 PARTITION p3 VALUES IN ('India'),
 PARTITION p_deft DEFAULT PARTITIONS 5
);

Execute the EXPLAIN statement to view partitions:
EXPLAIN SELECT * FROM list_default_hash;

The following information is displayed:
+----+-------------+-------------------+-------------------+------+---------------+------+---------+------+------
+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows |
filtered | Extra |
+----+-------------+-------------------+-------------------+------+---------------+------+---------+------+------
+----------+-------+
| 1 | SIMPLE | list_default_hash | p0,p1,pd0,pd1,pd2 | ALL | NULL | NULL | NULL | NULL |
1 | 100.00 | NULL |
+----+-------------+-------------------+-------------------+------+---------------+------+---------+------+------
+----------+-------+
1 row in set (0.04 sec)

Create a LIST DEFAULT HASH partitioned table which supports List Default
subpartitions:
CREATE TABLE test (a int, b int)
PARTITION BY RANGE(a)
SUBPARTITION BY LIST(b) (
PARTITION part0 VALUES LESS THAN (10)
(SUBPARTITION sub0 VALUES IN (1,2,3,4,5),
 SUBPARTITION sub1 DEFAULT),
PARTITION part1 VALUES LESS THAN (20)
(SUBPARTITION sub2 VALUES IN (1,2,3,4,5),
 SUBPARTITION sub3 DEFAULT),
PARTITION part2 VALUES LESS THAN (30)
(SUBPARTITION sub4 VALUES IN (1,2,3,4,5),
 SUBPARTITION sub5 DEFAULT));

Create a LIST DEFAULT HASH partitioned table which supports only HASH or
KEY subpartitions when there are multiple LIST DEFAULT HASH partitions:
CREATE TABLE list_default_hash_sub (
 a INT,
 b INT
)
PARTITION BY LIST (a)
SUBPARTITION BY HASH (b) SUBPARTITIONS 20
(PARTITION p0 VALUES IN (1,2,3,4,5),
 PARTITION p1 VALUES IN (6,7,8,9,10),
 PARTITION pd DEFAULT PARTITIONS 3);

Modifying a LIST DEFAULT HASH Partitioned Table
LIST DEFAULT HASH partitions support all the statements for modifying
partitioned tables, including ALTER TABLE ADD PARTITION, ALTER TABLE DROP
PARTITION, ALTER TABLE REORGANIZE PARTITION, ALTER TABLE TRUNCATE
PARTITION, ALTER TABLE EXCHANGE PARTITION, ALTER TABLE OPTIMIZE
PARTITION, ALTER TABLE REBUILD PARTITION, ALTER TABLE REPAIR PARTITION,

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

ALTER TABLE ANALYZE PARTITION, and ALTER TABLE CHECK PARTITION. The
following shows how to modify a LIST DEFAULT HASH partitioned table by
executing the ALTER TABLE ADD PARTITION, ALTER TABLE DROP PARTITION, and
ALTER TABLE REORGANIZE PARTITION statements.

● ALTER TABLE ADD PARTITION
– ADD DEFAULT PARTITION

If a partitioned table contains only LIST partitions, run ADD PARTITION
to add a DEFAULT partition so that the table becomes a LIST DEFAULT
HASH partitioned table.
ALTER TABLE table_name ADD PARTITION(default_partition_definition)

Add a DEFAULT partition:
CREATE TABLE list_tab (
 a INT,
 b INT
)
PARTITION BY LIST (a)
(PARTITION p0 VALUES IN (1,2,3,4,5),
 PARTITION p1 VALUES IN (6,7,8,9,10)
);
ALTER TABLE list_tab ADD PARTITION(PARTITION pd DEFAULT);

Add two DEFAULT partitions:
CREATE TABLE list_tab (
 a INT,
 b INT
)
PARTITION BY LIST (a)
(PARTITION p0 VALUES IN (1,2,3,4,5),
 PARTITION p1 VALUES IN (6,7,8,9,10)
);
ALTER TABLE list_tab ADD PARTITION(PARTITION pd DEFAULT PARTITIONS 2);

– ADD LIST PARTITION
You can add WITHOUT VALIDATION to the ALTER TABLE ADD
PARTITION statement to add LIST partitions.
ALTER TABLE table_name ADD PARTITION(
 list_partition_definition[, ..., list_partition_definition])
WITHOUT VALIDATION

Add a LIST partition:
CREATE TABLE list_default_hash (
 a INT,
 b INT
)
PARTITION BY LIST (a)
(PARTITION p0 VALUES IN (1,2,3,4,5),
 PARTITION p1 VALUES IN (6,7,8,9,10),
 PARTITION pd DEFAULT PARTITIONS 3);

ALTER TABLE list_default_hash ADD PARTITION(
 PARTITION p2 VALUES IN (11,12,13)
)WITHOUT VALIDATION;

After the statement is executed, a LIST partition named p2 is added to
table list_default_hash. There is no data in p2.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

NO TE

If you use WITHOUT VALIDATION to add a LIST partition, you need to manually
execute ALTER TABLE ... REBUILD ALL to reallocate data. Otherwise, data will
not be reallocated. Data that meets the new partition definition will be still
stored in the DEFAULT partition. During a query, all DEFAULT partitions will be
marked and not pruned. As a result, the query performance deteriorates. You are
advised to use the ALTER TABLE REORGANIZE PARTITION statement to separate
some data from the DEFAULT partition and create a new LIST partition.

● ALTER TABLE DROP PARTITION
The DROP PARTITION statement deletes all DEFAULT partitions at a time. You
cannot execute this statement to delete only some DEFAULT partitions.
Execute the DROP PARTITION statement to delete all partitions:
ALTER TABLE list_default_hash DROP PARTITION pd0,pd1,pd2;
Query OK, 0 rows affected (0.33 sec)
Records: 0 Duplicates: 0 Warnings: 0

NO TE

When you run the following statement to delete only some DEFAULT partitions, an
error will be reported.
ALTER TABLE list_default_hash DROP PARTITION pd0;
The error is:
ERROR 8078 (HY000): DROP PARTITION cannot be used on default partitions of LIST
DEFAULT, except once dropping all default partitions

● ALTER TABLE REORGANIZE PARTITION
The REORGANIZE PARTITION statement modifies all DEFAULT partitions at a
time. You cannot execute this statement to modify only some DEFAULT
partitions.
– Execute the REORGANIZE PARTITION statement to change the number of

DEFAULT partitions:
ALTER TABLE list_default_hash
REORGANIZE PARTITION
 pd0,pd1
INTO(
 PARTITION pd DEFAULT PARTITIONS 3);

After the statement is executed, the number of DEFAULT partitions
changes from 2 to 3.

– Execute the REORGANIZE PARTITION statement to split a LIST partition
from a DEFAULT partition:
ALTER TABLE list_default_hash
REORGANIZE PARTITION
 pd0,pd1
INTO (
 PARTITION p2 VALUES IN (20,21),
 PARTITION pd DEFAULT PARTITIONS 2);

After the statement is executed, a LIST partition named p2 is added to
the list_default_hash partitioned table. p2 contains data that meets the
VALUES IN (20,21) rule and is separated from the DEFAULT partition.

– Execute the REORGANIZE PARTITION statement to merge a LIST partition
into a DEFAULT partition:
ALTER TABLE list_default_hash
REORGANIZE PARTITION
 p2, pd0, pd1

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

INTO (
 PARTITION pd DEFAULT PARTITIONS 2);

After the statement is executed, the LIST partition p2 is merged into the
DEFAULT partition.

– Execute the REORGANIZE PARTITION statement to split some values
from a DEFAULT partition and add them to a LIST partition:
ALTER TABLE list_default
REORGANIZE partition
 p2, pd0, pd1
INTO (
 PARTITION p2 VALUES IN (20,21,22,23,24),
 PARTITION pd DEFAULT PARTITIONS 4);

After the statement is executed, the definition of p2 is changed from
PARTITION p2 VALUES IN (20,21) to PARTITION p2 VALUES IN
(20,21,22,23,24). Any data that matches the VALUES IN (20,21,22,23,24)
rule is then transferred from the DEFAULT partition to p2.

2.11.3 INTERVAL RANGE
An INTERVAL RANGE partitioned table is an extension of a RANGE partitioned
table. If data to be inserted into a RANGE partitioned table falls outside the range
of an existing partition, it cannot be inserted and an error will be returned.

If there is an INTERVAL RANGE partitioned table in a database, the database can
create a partition based on rules specified by the INTERVAL clause when data to
be inserted exceeds the range of an existing partition.

Prerequisites
● The kernel version of your TaurusDB instance must be 2.0.54.240600 or later.
● rds_interval_range_enabled has been set to ON.

Constraints
● INTERVAL RANGE partitioned tables support only HASH or KEY subpartitions.
● If an INTERVAL RANGE rule is in RANGE COLUMNS(column_list)

INTERVAL([type], value) format:
– column_list specifies only a single partition key, which must be of the

INTEGER, DATE, TIME, or DATETIME type.
– If the partition key is of the INTEGER type, the interval type (type) can be

left blank.
– If the partition key is of the DATE type, the interval type (type) can only

be YEAR, QUARTER, MONTH, WEEK, or DAY.
– If the partition key is of the TIME type, the interval type (type) can only

be HOUR, MINUTE, or SECOND.
– If the partition key is of the DATETIME type, the interval type (type) can

be YEAR, QUARTER, MONTH, WEEK, DAY, HOUR, MINUTE, or SECOND.
– The interval value (value) must be a positive integer.
– If the interval type (type) is SECOND, the interval cannot be less than 60.

● If an INTERVAL RANGE rule is in RANGE(expr) INTERVAL(value) format,
expr must be an integer, and value must be a positive integer.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

● You cannot execute the INSERT ... SELECT, INSERT ... ON DUPLICATE KEY
UPDATE, and UPDATE statements to add partitions.

● When you execute the LOAD DATA statement to import data, partition
creation will not be triggered. (If the range of the partition covers all data,
data can be imported. If the range of the partition does not cover all data,
automatic partition creation is not triggered, and data fails to be imported.)

● Once partitions are automatically created, they cannot be rolled back.
● Prefix _p is reserved for automatically created partitions. If you use this prefix

for custom partitions, automatic partition creation may fail.
● The SET INTERVAL([type], value) clause applies only to INTERVAL RANGE

and RANGE partitioned tables. If these tables have subpartitions, the
subpartitions must be of the HASH or KEY type.

● The values of type and value in the SET INTERVAL([type], value) clause
must be restricted by the partition expression expr or the partition key
column_list of the original table.

Parameters

Table 2-30 Parameter description

Parameter Level Description

rds_interval_range_enabl
ed

Global Enables or disables
INTERVAL RANGE.
Value:
● ON: INTERVAL

RANGE is enabled.
● OFF: INTERVAL

RANGE is disabled.

Creating an INTERVAL RANGE Partitioned Table
The definition format of an INTERVAL RANGE partitioned table is similar to that
of a RANGE partitioned table. The only difference is that the INTERVAL clause is
added.

Syntax:

CREATE TABLE [IF NOT EXISTS] [schema.]table_name
table_definition
partition_options;

partition_options is:

PARTITION BY
 RANGE {(expr) | COLUMNS(column_list)}
 {INTERVAL(value) | INTERVAL(type, expr)}
 (partition_definition [, partition_definition] ...)

partition_definition is:

PARTITION partition_name
 [VALUES LESS THAN {expr | MAXVALUE}]

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

 [[STORAGE] ENGINE [=] engine_name]
 [COMMENT [=] 'string']
 [DATA DIRECTORY [=] 'data_dir']
 [INDEX DIRECTORY [=] 'index_dir']
 [MAX_ROWS [=] max_number_of_rows]
 [MIN_ROWS [=] min_number_of_rows]
 [TABLESPACE [=] tablespace_name]

The INTERVAL clause supports only the interval value (value) and interval type
(type).

Description of parameters associated with the INTERVAL clause:

Table 2-31 Parameter description

Parameter Description

INTERVAL(value) The format of the INTERVAL clause when RANGE
COLUMNS(column_list) with an integer column or
RANGE(expr) is used. value indicates the interval
value and must be a positive integer.

expr The expression of the partition. It is used in RANGE()
and must be of the integer type.

column_list The list of partitions. It is used in RANGE
COLUMNS(). In an INTERVAL RANGE partitioned
table, column_list can only be a single column.

INTERVAL(type, value) The format of the INTERVAL clause when RANGE
COLUMNS(column_list) is used and column_list is
of the DATE, TIME, or DATETIME type. type indicates
the interval type and its value can be YEAR,
QUARTER, MONTH, WEEK, DAY, HOUR, MINUTE, or
SECOND. value indicates the interval value, which
must be a positive integer. When type is set to
SECOND, the interval value cannot be less than 60.

Further description of interval values (value) and interval types (type):

● Interval values (expr)
Add 1,000 consecutive numbers to a partition.
Example:
INTERVAL(1000)

● Time types
– YEAR

Set the interval type to YEAR and add the data of one year to a partition.
Example:
INTERVAL(YEAR, 1)

– QUARTER
Set the interval type to QUARTER and add the data of one quarter to a
partition.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

Example:
INTERVAL(QUARTER, 1)

– MONTH
Set the interval type to MONTH and add the data of one month to a
partition.
Example:
INTERVAL(MONTH, 1)

– WEEK
Set the interval type to WEEK and add the data of one week to a
partition.
Example:
INTERVAL(WEEK, 1)

– DAY
Set the interval type to DAY and add the data of one day to a partition.
Example:
INTERVAL(DAY, 1)

– HOUR
Set the interval type to HOUR and add the data of one hour to a
partition.
Example:
INTERVAL(HOUR, 1)

– MINUTE
Set the interval type to MINUTE and add the data of one minute to a
partition.
Example:
INTERVAL(MINUTE, 1)

– SECOND
Set the interval type to SECOND and add the data of every 60 seconds to
a partition.
Example:
INTERVAL(SECOND, 60)

The following example uses order_time as the partition key to partition the sales
table by interval.

Create an INTERVAL RANGE partitioned table in a database and insert data into a
table. Example:

CREATE TABLE sales
(
 id BIGINT,
 uid BIGINT,
 order_time DATETIME
)
PARTITION BY RANGE COLUMNS(order_time) INTERVAL(MONTH, 1)
(
 PARTITION p0 VALUES LESS THAN('2021-9-1')
);

Insert data into the INTERVAL RANGE partitioned table. Example:

INSERT INTO sales VALUES(1, 1010101010, '2021-11-11');

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

After data is inserted, execute the SHOW CREATE TABLE statement to query the
sales table definition. The new table definition is as follows:

CREATE TABLE `sales` (
 `id` bigint DEFAULT NULL,
 `uid` bigint DEFAULT NULL,
 `order_time` datetime DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
/*!50500 PARTITION BY RANGE COLUMNS(order_time) */ /*!99990 800220201
INTERVAL(MONTH, 1) */
/*!50500 (PARTITION p0 VALUES LESS THAN ('2021-9-1') ENGINE = InnoDB,
 PARTITION _p20211001000000 VALUES LESS THAN ('2021-10-01 00:00:00') ENGINE = InnoDB,
 PARTITION _p20211101000000 VALUES LESS THAN ('2021-11-01 00:00:00') ENGINE = InnoDB,
 PARTITION _p20211201000000 VALUES LESS THAN ('2021-12-01 00:00:00') ENGINE = InnoDB)
*/

In the preceding example, three partitions _p20211001000000,
_p20211101000000, and _p20211201000000 are automatically added to the
INTERVAL RANGE partition. Note that partition names prefixed with _p are
reserved by the system. Such partition names cannot be used when you
create or rename partitions..

INTERVAL RANGE partitioned tables support HASH or KEY subpartitions. Example:

CREATE TABLE sales_ir_key
(
 dept_no INT,
 part_no INT,
 country varchar(20),
 date DATE,
 amount INT
)
PARTITION BY RANGE(month(date)) INTERVAL(1)
SUBPARTITION BY KEY(date) SUBPARTITIONS 2
(
 PARTITION q1_2012 VALUES LESS THAN(4)
 (SUBPARTITION sp_001,
 SUBPARTITION sp_002),
 PARTITION q2_2012 VALUES LESS THAN(7)
 (SUBPARTITION sp_003,
 SUBPARTITION sp_004)
);

CREATE TABLE sales_ir_hash
(
 dept_no INT,
 part_no INT,
 country varchar(20),
 date DATE,
 amount INT
)
PARTITION BY RANGE COLUMNS(date) INTERVAL(YEAR, 1)
SUBPARTITION BY HASH(TO_DAYS(date)) SUBPARTITIONS 2
(
 PARTITION q1_2012 VALUES LESS THAN('2021-01-01')
 (SUBPARTITION sp_001,
 SUBPARTITION sp_002),
 PARTITION q2_2012 VALUES LESS THAN('2022-01-01')
 (SUBPARTITION sp_003,
 SUBPARTITION sp_004)
);

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

Conversion Between INTERVAL RANGE Partitioned Tables and Other Types
of Tables

Syntax:

Convert other types of tables to INTERVAL RANGE partitioned tables.

ALTER TABLE table_name table_definition
partition_options;

partition_options:
 PARTITION BY
 { RANGE{(expr) | COLUMNS(column_list)} }
 { INTERVAL(type, value) | INTERVAL(value) }
 [(partition_definition [, partition_definition] ...)]

partition_definition:
 PARTITION partition_name
 [VALUES LESS THAN {expr | MAXVALUE}]
 [[STORAGE] ENGINE [=] engine_name]
 [COMMENT [=] 'string']
 [DATA DIRECTORY [=] 'data_dir']
 [INDEX DIRECTORY [=] 'index_dir']
 [MAX_ROWS [=] max_number_of_rows]
 [MIN_ROWS [=] min_number_of_rows]
 [TABLESPACE [=] tablespace_name]

Description of parameters associated with the INTERVAL clause:

Table 2-32 Parameter description

Parameter Description

INTERVAL(value) The format of the INTERVAL clause when RANGE
COLUMNS(column_list) with an integer column or
RANGE(expr) is used. value indicates the interval
value and must be a positive integer.

expr The expression of the partition. It is used in RANGE()
and must be of the integer type.

column_list The list of partitions. It is used in RANGE
COLUMNS(). In an INTERVAL RANGE partitioned
table, column_list can only be a single column.

INTERVAL(type, value) The format of the INTERVAL clause when RANGE
COLUMNS(column_list) is used and column_list is of
the DATE, TIME, or DATETIME type. type indicates the
interval type and its value can be YEAR, QUARTER,
MONTH, WEEK, DAY, HOUR, MINUTE, or SECOND.
value indicates the interval value, which must be a
positive integer. When type is set to SECOND, the
interval value cannot be less than 60.

Convert an INTERVAL RANGE partitioned table to any other type of table.
partition_options is optional.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

ALTER TABLE table_name table_definition
[partition_options];

Examples:

Convert other types of tables to INTERVAL RANGE partitioned tables.

CREATE TABLE orders(
 orderkey BIGINT NOT NULL,
 custkey BIGINT NOT NULL,
 orderdate DATE NOT NULL
);

ALTER TABLE orders
PARTITION BY RANGE COLUMNS(orderdate) INTERVAL(MONTH, 1) (
 PARTITION p0 VALUES LESS THAN('2021-10-01')
);

Convert an INTERVAL RANGE partitioned table to another type of table.

CREATE TABLE orders (a INT, b DATETIME)
PARTITION BY RANGE (a) INTERVAL(10)
(
 PARTITION p0 VALUES LESS THAN(10),
 PARTITION p2 VALUES LESS THAN(20)
);

ALTER TABLE orders PARTITION BY LIST COLUMNS (a)
(
 PARTITION p0 VALUES IN (1, 11, 25)
);

Modify the INTERVAL clause in the INTERVAL RANGE partitioned table.

CREATE TABLE orders (a INT, b DATETIME)
PARTITION BY RANGE (a) INTERVAL(10)
(
 PARTITION p0 VALUES LESS THAN(10),
 PARTITION p2 VALUES LESS THAN(20)
);

ALTER TABLE orders PARTITION BY RANGE (a) INTERVAL(20)
(
 PARTITION p0 VALUES LESS THAN(10),
 PARTITION p2 VALUES LESS THAN(20)
);

Delete the INTERVAL clause.
ALTER TABLE orders PARTITION BY RANGE (a)
(
 PARTITION p0 VALUES LESS THAN(10),
 PARTITION p2 VALUES LESS THAN(20)
);

Add the INTERVAL clause.
ALTER TABLE orders PARTITION BY RANGE (a) INTERVAL(100)
(
 PARTITION p0 VALUES LESS THAN(10),
 PARTITION p2 VALUES LESS THAN(20)
);

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

SET INTERVAL Clause Usage
You can use the SET INTERVAL clause to modify the interval type and value of the
INTERVAL clause defined in the INTERVAL RANGE partitioned table, or eliminate
or add the INTERVAL clause.

Syntax:

ALTER TABLE table_name SET INTERVAL {() | (type, value) | (value)};

Table 2-33 Parameter description

Parameter Description

type The type of the interval. Its value can be YEAR,
QUARTER, MONTH, WEEK, DAY, HOUR, MINUTE, or
SECOND. If you do not specify this parameter, the
numeric type is used by default.

value The value of the interval. When type is set to
SECOND, the interval value cannot be less than 60.

Example:

Modify the interval type and value in the INTERVAL RANGE partitioned table.

CREATE TABLE orders(
 orderkey BIGINT NOT NULL,
 custkey BIGINT NOT NULL,
 orderdate DATE NOT NULL
)
PARTITION BY RANGE COLUMNS(orderdate) INTERVAL(MONTH, 1) (
 PARTITION p0 VALUES LESS THAN('2021-10-01')
);

ALTER TABLE orders SET INTERVAL(YEAR, 1);

Convert a RANGE partitioned table to an INTERVAL RANGE partitioned table.

CREATE TABLE orders(
 orderkey BIGINT NOT NULL,
 custkey BIGINT NOT NULL,
 orderdate DATE NOT NULL
)
PARTITION BY RANGE COLUMNS(orderdate) INTERVAL(MONTH, 1) (
 PARTITION p0 VALUES LESS THAN('2021-10-01')
);

Delete the INTERVAL clause.
ALTER TABLE sales SET INTERVAL();

Add the INTERVAL clause.
ALTER TABLE sales SET INTERVAL(DAY, 60);

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

CA UTION

The ALTER TABLE table_name SET INTERVAL() statement can be used even if
rds_interval_range_enabled is disabled. This statement is used to eliminate the
definition of the INTERVAL clause in an INTERVAL RANGE partitioned table and
convert the partitioned table to a RANGE partitioned table.

2.11.4 Partition-level MDL
In MySQL Community Edition, you cannot perform both data manipulation
language (DML) operations for accessing data of partitioned tables and data
definition language (DDL) operations for maintaining partitions at the same time.
This means that DDL operations can only be done during off-peak hours.
However, the frequent creation and deletion of partitions greatly limits the use of
partitioned tables.

To resolve such an issue, TaurusDB introduces partition-level metadata lock (MDL)
to refine the lock granularity of a partitioned table from the table level to the
partition level. After partition-level MDL is enabled, DML operations and specific
DDL operations (such as adding and deleting partitions) on different partitions
can be both performed, greatly improving concurrency between partitions.

Constraints
● Partition-level MDL is only available for ADD PARTITION operations for

RANGE and LIST partitioning and DROP PARTITION operations.
● ADD PARTITION and DROP PARTITION operations only support the INPLACE

algorithm.
● The isolation level can be set to the session level. If transaction_isolation is

set to REPEATABLE-READ or a higher isolation level, the following error may
be reported when DDL operations are performed concurrently:
ERROR HY000: Table definition has changed, please retry transaction.

This is normal because a transaction accesses the new partition created by
DDL. To resolve this issue, you can simply re-execute the transaction.

Prerequisites
● The kernel version of your TaurusDB instance must be 2.0.57.240900 or later.
● The global isolation level of transaction_isolation must be set to READ-

COMMITTED.

Enabling Partition-level MDL
You can set the rds_partition_level_mdl_enabled parameter to configure
partition-level MDL.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

Table 2-34 Parameter description

Parameter Level Description

rds_partition_level_m
dl_enabled

Global Controls whether to enable partition-
level MDL.
ON: Partition-level MDL is enabled.
OFF (default value): Partition-level
MDL is disabled.
NOTE

A reboot is required to apply the parameter
modification.

Examples
Partition-level MDL ensures that DDL and DML operations do not affect each
other. You can maintain partitions more flexibly without affecting the traffic of a
partitioned table.

The following is an example:

1. Prepare data.
mysql>
mysql> CREATE TABLE t1 (c1 INTEGER NOT NULL PRIMARY KEY, c2 CHAR(10)) PARTITION BY
RANGE (c1) (
 -> PARTITION p0 VALUES LESS THAN (100),
 -> PARTITION p1 VALUES LESS THAN (200),
 -> PARTITION p2 VALUES LESS THAN (300),
 -> PARTITION p3 VALUES LESS THAN (400),
 -> PARTITION p4 VALUES LESS THAN (500));
Query OK, 0 rows affected (0.22 sec)

mysql> INSERT INTO t1 VALUES(0,'abc'),(100,'abc'),(200,'abc'),(300,'abc'),(400,'abc');
Query OK, 5 rows affected (0.02 sec)
Records: 5 Duplicates: 0 Warnings: 0

2. Start a transaction on client 1.
mysql> BEGIN;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM t1 WHERE c1 >= 300;
+-----+------+
| c1 | c2 |
+-----+------+
| 300 | abc |
| 400 | abc |
+-----+------+
2 rows in set (0.00 sec)

3. Add a new partition on client 2.
mysql> ALTER TABLE t1 ADD PARTITION (PARTITION p5 VALUES LESS THAN (600));
Query OK, 0 rows affected (0.21 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> INSERT INTO t1 VALUES(500,'abc');
Query OK, 1 row affected (0.00 sec)

4. On client 1, check that the new partition data is available in the transaction.
mysql> SELECT * FROM t1 WHERE c1 >= 300;
+-----+------+
| c1 | c2 |

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

+-----+------+
300	abc
400	abc
500	abc
+-----+------+
3 rows in set (0.00 sec)

5. Drop an old partition on client 2.
mysql> ALTER TABLE t1 DROP PARTITION p0;
Query OK, 0 rows affected (0.13 sec)
Records: 0 Duplicates: 0 Warnings: 0

6. On client 1, check that the old partition no longer exists and the new
partition exists.
mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t1` (
 `c1` int NOT NULL,
 `c2` char(10) DEFAULT NULL,
 PRIMARY KEY (`c1`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
/*!50100 PARTITION BY RANGE (`c1`)
(PARTITION p1 VALUES LESS THAN (200) ENGINE = InnoDB,
 PARTITION p2 VALUES LESS THAN (300) ENGINE = InnoDB,
 PARTITION p3 VALUES LESS THAN (400) ENGINE = InnoDB,
 PARTITION p4 VALUES LESS THAN (500) ENGINE = InnoDB,
 PARTITION p5 VALUES LESS THAN (600) ENGINE = InnoDB) */
1 row in set (0.00 sec)

7. Commit the transaction on client 1.
mysql> COMMIT;
Query OK, 0 rows affected (0.01 sec)

Partition-level MDL reduces the granularity of locks acquired during DML and DDL
operations to improve concurrency. During partition maintenance, you can check
the acquisition of partition-level MDL locks through the
performance_schema.metadata_locks table. The following is an example:

1. Start a transaction on client 1.
mysql> BEGIN;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM t1 WHERE c1 >= 500;
+-----+------+
| c1 | c2 |
+-----+------+
| 500 | abc |
+-----+------+
1 rows in set (0.00 sec)

2. On client 1, check the acquisition of MDL locks.
mysql> SELECT * FROM performance_schema.metadata_locks;
+-------------------+--------------------+----------------+-----------------------+-----------------------
+---------------------+---------------+-------------+-------------------+-----------------+----------------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | COLUMN_NAME |
OBJECT_INSTANCE_BEGIN | LOCK_TYPE | LOCK_DURATION | LOCK_STATUS | SOURCE |
OWNER_THREAD_ID | OWNER_EVENT_ID |
+-------------------+--------------------+----------------+-----------------------+-----------------------
+---------------------+---------------+-------------+-------------------+-----------------+----------------+
| TABLE | test | t1 | NULL | 140082560509056 |
SHARED_READ | TRANSACTION | GRANTED | sql_parse.cc:8006 | 69 | 23 |
| PARTITION | test | t1 | p5 | 140082560508384 |
SHARED_READ | TRANSACTION | GRANTED | sql_lex.cc:5434 | 69 | 23 |
| TABLE | performance_schema | metadata_locks | NULL | 140082560511936 |
SHARED_READ | TRANSACTION | GRANTED | sql_parse.cc:8006 | 69 | 24 |
+-------------------+--------------------+----------------+-----------------------+-----------------------
+---------------------+---------------+-------------+-------------------+-----------------+----------------+
4 rows in set (0.01 sec)

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

The transaction of client 1 acquires a SHARED_READ lock of table t1 and a
SHARED_READ lock of partition p5. Partition p5 is the partition that needs to
be accessed and is obtained through partition pruning.

3. Drop partition p5 on client 2.
mysql> ALTER TABLE t1 DROP PARTITION p5;

Client 1 is accessing partition p5 and has acquired a SHARED_READ lock of
partition p5. In this case, the DROP operation is blocked and enters the
waiting state.

4. Check that the DROP operation is blocked and enters the waiting state.
mysql> SHOW PROCESSLIST;
+----+-----------------+-----------------+------+---------+-------+---
+----------------------------------+
| Id | User | Host | db | Command | Time | State |
Info |
+----+-----------------+-----------------+------+---------+-------+---
+----------------------------------+
| 5 | event_scheduler | localhost | NULL | Daemon | 33127 | Waiting on empty queue
| NULL |
| 13 | root | localhost:42926 | test | Query | 0 | init | SHOW
PROCESSLIST |
| 14 | root | localhost:42936 | test | Query | 180 | Waiting for table partition metadata lock |
ALTER TABLE t1 DROP PARTITION p5 |
| 15 | root | localhost:42938 | test | Sleep | 1542 | |
NULL |
+----+-----------------+-----------------+------+---------+-------+---
+----------------------------------+
4 rows in set (0.00 sec)

5. After the transaction is committed on client 1, check that partition p5 is
dropped on client 2.
Client 1:
mysql> COMMIT;
Query OK, 0 rows affected (0.01 sec)

Client 2:
mysql> ALTER TABLE t1 DROP PARTITION p5;
Query OK, 0 rows affected (1 min 2.48 sec)
Records: 0 Duplicates: 0 Warnings: 0

2.12 Hot Row Update
Hot rows indicate the rows that are frequently added, deleted, modified, and
queried in a database in the following scenarios, such as flash sales, concert ticket
booking, and train ticket booking for hot routes. When a transaction updates data
in a row, the row needs to be locked. Only one transaction can update a row at a
time, and other transactions can continue to be executed only after the row lock is
released, so the performance of existing hot row update is poor. Traditional
sharding policies are ineffective to improve the processing performance.

TaurusDB optimizes hot row update, which can be automatically or manually
enabled. After hot row update is enabled, hot rows can be updated efficiently.

Principles
The following figure shows the architecture of TaurusDB hot row update. There
are two parts: Counter_hash and Group_hash. Counter_hash is used to
automatically determine which rows are hot rows. Group_hash consists of multiple

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

hotspot groups and is used to update hot rows. Each hotspot group corresponds to
a hot row. Each hotspot group consists of multiple batches to ensure that the
statements that update hot rows can be committed alternately.

Constraints
● The kernel version of your TaurusDB instance must be 2.0.54.240600 or later.
● Usage constraints:

– In a WHERE condition, only a primary key or unique index can be used
for equality matching, and only one record can be updated.

– Index columns cannot be modified.
– The modifications apply only for the columns of the integer type.
– Only two elements in a hot row record can be added or subtracted. The

first element is the same as the left side of the equal sign (=) and meets
the constraints such as unique indexes. Value assignment is not allowed.
Assuming that c is the column to be modified and d is a common
column, only operations similar to c=c+1 or c=c-1 are allowed.
Operations such as c=d+1, c=1+c, c=c+1+1, and c=1+c+1 are not allowed.

– This function applies only for implicit transactions. That is,
AUTOCOMMIT must be set to ON and cannot be used in BEGIN and
COMMIT transactions.

– You need to use HOTSPOT to explicitly mark hot row update transactions,
or set rds_hotspot_auto_detection_threshold to a value other than 0 to
enable automatic hot row update identification. For details about how to

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

use rds_hotspot_auto_detection_threshold, see the parameter
description.

– The isolation level of transactions in a database must be READ
COMMITTED (RC).

– This function cannot be used in stored functions, triggers, or events.
Otherwise, the following error is reported on the client:
HOTSPOT hints can not be used in stored function, trigger or event

● Behavior change: In a hotspot transaction group, except the transactions that
failed to be executed or that were killed in the update phase, other
transactions are committed in batches and recorded in redo logs and undo
logs. These transactions can only be committed or rolled back in batches and
cannot be rolled back separately. Dozens to hundreds of transactions can be
committed in each batch.

Parameter Description

Table 2-35 Parameter description

Parameter Description

rds_hotspot Whether to enable hot row update. ON: The
function is enabled.

rds_hotspot_follower_wait_com
mit_interval

Sleep time in microseconds before a follower
transaction is blocked when waiting for the
leader transaction logs to be persisted. For
instances with slow log persistence, you are
advised to increase the value. For instances
with fast log persistence, you are advised to
set this parameter to 0 so that follower
transactions are blocked without sleeping.

rds_hotspot_leader_wait_followe
r_interval

Time interval, in microseconds, that the
leader transaction in a hot row update waits
for the follower transaction to update
records. In low concurrency, you are advised
to set this parameter to a smaller value to
avoid performance deterioration. In high
concurrency, you are advised to set this
parameter to a larger value to improve
performance. If queries per second (QPS)
exceeds 200,000, you are advised to set this
parameter to 100 or a larger value.

rds_hotspot_auto_detection_thre
shold

Whether to enable automatic identification
for hot rows. The value 0 indicates that the
function is disabled. If the value is not 0, it
indicates the threshold for identifying hot
rows. When the number of row updates per
second exceeds the threshold, hot row update
is enabled.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

Parameter Description

rds_hotspot_batch_size_lower_li
mit

Recommended minimum size for each batch
of hot transactions. Each batch should strive
to reach this size as much as possible.
However, this is not strictly guaranteed.
When the leader finds that all followers to be
waited for have arrived, the batch of
transactions enters the commit state.

rds_hotspot_max_memory_size Maximum memory occupied by groups and
counters during a hot row update. When the
memory occupied by a group exceeds the
threshold, the memory occupied by the group
is cleared. When the memory occupied by a
counter exceeds the threshold, the memory
occupied by the counter is cleared. The
system attempts to clear the old memory
only when a new memory is applied for.

rds_hotspot_enable_time_statisti
cs

Whether to enable status statistics related to
the update time of hot rows. The value ON
indicates this function is enabled.

Status Description

Table 2-36 Status description

Status Description

Hotspot_total_trx Total transactions using the hot row upgrade
function.

Hotspot_update_errors Transactions that failed to update hot rows.
These transactions do not affect the commit of
other transactions that update how rows.

Hotspot_trx_rollbacked Number of transactions that are successfully
updated but are finally rolled back. When the
leader transaction decides to roll back, all
follower transactions roll back together.

Hotspot_trx_committed Number of transactions that are successfully
committed to update hot rows.

Hotspot_batch_size Number of transactions that are to update hot
rows at a time. These transactions are
committed in batches.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

Status Description

Hotspot_batch_wait_time Time in microseconds that the next batch of
transactions that are to update hot rows waits
for the previous batch of transaction to release
the lock. When a batch of transactions to
update rows is committed, the rows are locked.

Hotspot_leader_wait_follower_
time

Time in microseconds for the leader to wait for
the followers in the current batch to complete
record update.

Hotspot_leader_total_time Total time spent by the leader transaction in
updating hot rows in the current batch, in
microseconds.

Hotspot_follower_total_time Total time spent by a follower transaction in
updating hot rows in the current batch, in
microseconds.

Hotspot_follower_wait_commit
_time

Time for a follower to wait for the leader to
persist logs in the current batch, in
microseconds.

Hotspot_group_counts Number of groups. Each hot row update
corresponds to a group, and transactions in the
group are committed in batches.

Hotspot_counter_counts Number of counters. Counters are used to
automatically determine whether a hot row is
updated. When the statistical value in a
counter meets the requirement, a group is
created for hot row update.

New Keywords
The following table lists new keywords.

Table 2-37 New keywords

Keyword Description

HOTSPOT Indicates that hot row update is enabled.

NOT_MORE_TH
AN

(Optional) Indicates that the target value is not greater than
a certain value.

NOT_LESS_THA
N

(Optional) Indicates that the target value is not less than a
certain value.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

The preceding keywords are placed at the end of an SQL statement. HOTSPOT
must be placed at the beginning. NOT_MORE_THAN and NOT_LESS_THAN can
be placed at any position.

For example, if id is a primary key column and c is an INT column, the following
syntax is supported:

UPDATE c=c+1 where id=10 HOTSPOT;
UPDATE c=c+1 where id=10 HOTSPOT NOT_MORE_THAN 100; // The value of the c column is
not greater than 100.
UPDATE c=c-1 where id=10 HOTSPOT NOT_LESS_THAN 0; // The value of the c column is not
less than 0.
UPDATE c=c+1 where id=10 HOTSPOT NOT_MORE_THAN 100 NOT_LESS_THAN 0; // The value
of the c column is not greater than 100 and not less than 0.
UPDATE c=c+1 where id=10 HOTSPOT NOT_LESS_THAN 0 NOT_MORE_THAN 100; // The value
of the c column is not greater than 100 and not less than 0.

When any value exceeds the value of NOT_MORE_THAN or NOT_LESS_THAN,
the following error is reported to the client:

HOTSPOT field value exceeds limit

Example
1. Create a table and prepare data.

CREATE TABLE test.hotspot1 (
 `id` int NOT NULL primary key,
 `c` int NOT NULL DEFAULT '0'
) ENGINE=InnoDB;
INSERT INTO test.hotspot1 VALUES (1, 1);

2. Enable hot row update.
SET GLOBAL rds_hotspot = ON;

3. Change the isolation level to AUTOCOMMIT.
SET SESSION TRANSACTION ISOLATION LEVEL READ COMMITTED;
SET SESSION AUTOCOMMIT = ON;

4. Initiate an update with HOTSPOT keyword.
UPDATE test.hotspot1 SET c=c+1 WHERE id=1 HOTSPOT;

5. Check the update status of hot rows.
SHOW STATUS like "%hotspot%";

Performance test
● Test environments

Instance specifications: 8 vCPUs | 32 GB, 32 vCPUs | 128 GB
ECS specifications: 32 vCPUs | 64 GB
Region: CN North-Beijing4
Test tool: sysbench-1.0.18
Data models:
– One table with one data record
– Eight tables, with each table containing one data record

● Parameter settings
rds_hotspot=ON
transaction_isolation=READ-COMMITTED

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

max_prepared_stmt_count=1048576
rds_global_sql_log_bin=OFF

● Test method
Definition of the data tables required for the test:
CREATE TABLE sbtest (id int NOT NULL AUTO_INCREMENT,k int NOT
NULL DEFAULT '0',PRIMARY KEY (id));
Test statement:
UPDATE sbtest%u SET k=k+1 WHERE id=1 hotspot;

● Test scenarios and results
Test scenario 1: updating a single hot row of an instance with 8 vCPUs and 32
GB
Test result: The performance of all concurrent requests was improved to
different degrees. The performance of 64 or less concurrent requests was not
improved significantly, but the performance of 128 or more concurrent
requests was improved significantly (up to 9.26 times).

Test scenario 2: Updating a single hot row of an instance with 32 vCPUs and
128 GB

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

Test result: The performance of 128 or more concurrent requests was
improved significantly, by 639 times.

Test scenario 3: Updating eight hot rows of an instance with 32 vCPUs and
128 GB
Test result: The performance of 256 or less concurrent requests was not
improved, but the performance of 512 or more concurrent requests was
improved significantly, by 78 times.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

2.13 Multi-tenant Management and Resource Isolation
This section describes the syntax and usage of multi-tenant data isolation and
resource isolation provided by TaurusDB.

Overview
TaurusDB provides multi-tenant management to maximize database resource
utilization. Data is isolated among tenants. Different tenants can only access their
own data. There are tenant-level resource isolation and user-level resource
isolation to avoid resource wastes and improve performance. Resources can be
dynamically adjusted to process workload peaks and troughs of different tenants
or users in a timely manner.

The following figure shows the principle of multi-tenant management.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

Figure 2-22 Principle diagram

Basic Concepts
Table 2-38 describes the terms for tenant-level and user-level resource isolation.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

Table 2-38 Term description

Level Term

Tenant-level tenant: Tenants are under a DB instance and above databases
and users. Tenants are used for data isolation and resource
isolation. However, databases can be accessed as a user.

resource configuration (resource_config): A resource
configuration indicates the resources available to a tenant,
enabling tenant-level resource isolation. Currently, vCPU
resources can only be limited by setting min_cpu and
max_cpu. The following resource configurations are built in:
● RDS_SYS_CONFIG: resource configuration of the system

tenant. The default value of min_cpu is 0.1 (unit: vCPUs),
and the default value of max_cpu is the vCPUs in the
instance specifications.

● shared_tenants_config: resource configuration of the
shared tenant. The value of min_cpu is fixed to 0, and the
default value of max_cpu is the vCPUs in the instance
specifications.

There are system tenants and common tenants based on data
isolation.
system tenant (sys_tenant): System tenants are designed to
accommodate users that exist before the implementation of
the multi-tenant management. By default, these existing users
belong to system tenants and are also referred to as system
users. If a user under a system tenant can connect to and
access a DB instance, the user can access the databases of all
tenants.
common tenant (user_tenant): You can create common
tenants as a system tenant. The users and databases of each
common tenant are completely isolated from those of other
common tenants. In addition, common tenants cannot access
databases of the system tenants.
The resources available to tenants, currently limited to vCPUs,
are determined by tenant-level resource configurations. There
are dedicated tenants and shared tenants based on resource
isolation.
dedicated tenant: The value of min_cpu in the resource
configuration associated with the tenant is greater than 0.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

Level Term

Ensure that vCPUs allocated to dedicated tenants at any time
are not less than the value of min_cpu.
shared tenant: tenants associated with the specific resource
configuration shared_tenants_config. The value of min_cpu
in the resource configuration is 0. The system preferentially
ensures the resource requests of dedicated tenants and then
allocates the remaining resources to shared tenants. In
addition, the system reserves some vCPUs (specified by the
mt_shared_cpu_reserved parameter) for shared tenants to
ensure that shared tenants can obtain resources during vCPU
contention. You can modify associated resource configurations
to change the roles between dedicated and shared tenants.

User-level Users are under DB instances and tenants. A tenant can have
multiple users. Multi-tenancy does not change how user data
is isolated, but it does provide a way to manage resources at
the user level.

Figure 2-23 User-level resource configuration relationship

resource consumer group (consumer_group)
Multiple users can belong to a given resource consumer group
to share the resources associated with the group.
resource plan directive (plan_directive)
A resource plan directive corresponds to only one resource
consumer group and describes the specific resource
configuration of the resource consumer group. A resource
consumer group can be associated with multiple resource plan
directives, but only one can be enabled at a time.
resource plan (plan)
A resource plan controls whether to enable or disable a
resource plan directive. Each resource plan is associated with
one or more resource plan directives. Enabling or disabling a
resource plan will activate or deactivate the resource plan
directive. Only one resource plan can be enabled per tenant.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

Constraints
● Multi-tenant management and resource isolation can only isolate tenant

data, tenant vCPUs, and user vCPUs.
● The kernel version of your TaurusDB instance must be 2.0.57.240900 or later.
● Thread Pool must be enabled.
● Database names, usernames, and tablespace names in a DB instance do not

contain at signs (@).
● Serverless instances do not support multi-tenant management and resource

isolation.
● Tenant migration across instances:

After multi-tenant management and resource isolation is enabled, DRS can
migrate data of all tenants. However, DRS does not synchronize tenant
metadata, so tenant information cannot be synchronized to the destination
instance. To migrate a tenant from an instance to another instance, perform
the following steps:

a. Select an instance that supports multi-tenant management as the
destination instance and manually create a tenant for the destination
instance.

b. Use DRS to create a database-level synchronization task. (If the tenant
names at the source and destination instances are changed, you need to
change the destination database name.)

c. Synchronize data.
● Binlog:

If common tenants pull binlogs, data among tenants will not be isolated.
Users of common tenants are not allowed to pull binlogs.

● Proxy instance:
The HTAP standard and lightweight editions do not support databases whose
name contains at signs (@). When a database of a common tenant is
migrated to an HTAP instance, the destination database name will be
changed. After Auto Assign Requests to Column Store or Row Store Nodes
is enabled, the proxy instance requires that the source and destination
database names be the same, so this function must be disabled for migrating
databases of common tenants.

● Backup and restoration:
When you restore data of an instance with multi-tenancy enabled to a new
instance with multi-tenancy disabled, you cannot create users, databases, and
tablespaces with at signs (@) in their names for the new instance.

● Compatibility:
– If multi-tenancy is enabled and then disabled, the names of databases,

users, or tablespaces cannot contain at signs (@).

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

– For a common tenant, the maximum length of a database name is
reduced from 64 characters to 50 characters, and the maximum length of
a user name is reduced from 32 characters to 20 characters.

– The system databases mysql and sys are not available to common
tenants.

– For a common tenant, fuzzy search is required when a username or
database name is used to query tables in the system database
performance_schema.

– User root under a system tenant can kill sessions of other users. Users
under a common tenant can only kill their own sessions.

– Instances with multi-tenancy enabled do not support full-text indexes.

Enabling the Multi-Tenant Mode

Step 1 Log in to the management console.

Step 2 Click in the upper left corner and select a region and project.

Step 3 Click in the upper left corner of the page and choose Databases > TaurusDB.

Step 4 On the Instances page, click the instance name to go to the Basic Information
page.

Step 5 In the Instance Information area, click under Multi-tenancy. In the
displayed dialog box, click OK.

Before enabling multi-tenancy, ensure that the existing database names,
usernames, and tablespaces do not contain at signs (@), or the function fails to be
enabled.

----End

Resource Management

Resource configurations and tenants are in one-to-many relationship. When a
tenant is bound to a resource configuration, the vCPUs used by users of the tenant
is restricted.

● Create a resource configuration.
CREATE resource_config config_name MAX_CPU [=] {max_cpu_value} [MIN_CPU [=]
{min_cpu_value}];

● Alter a resource configuration.
ALTER resource_config config_name MAX_CPU [=] {max_cpu_value} [MIN_CPU [=]
{min_cpu_value}];

● Drop a resource configuration.
DROP resource_config config_name;

● Query a resource configuration.
SELECT * FROM information_schema.DBA_RSRC_TENANT_RESOURCE_CONFIGS;

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

https://console-intl.huaweicloud.com/?locale=en-us

NO TE

● The proceeding statements can only be executed by user root.
● Parameter description:

● config_name: resource configuration name. The value can contain up to 64
characters. Only uppercase letters, lowercase letters, digits, and underscores (_) are
allowed.

● MAX_CPU: maximum vCPUs available to tenants bound to a resource
configuration. The minimum value is 0.1, and the maximum value is vCPUs in the
instance specifications. You can obtain the value from the mt_flavor_cpu variable.
The granularity is 0.1.

● MIN_CPU: vCPUs committed to tenants bound to a resource configuration during
vCPU contention. This parameter is optional. The default value is the same as the
value of MAX_CPU. Value range: 0.1 to the value of MAX_CPU. The granularity is
0.1. (Note: shared_tenants_config is a built-in resource configuration, and its
MIN_CPU is 0.) vCPUs committed to tenants comply with an on-demand allocation
policy and are not reserved. For example, if 1 vCPU is committed to a tenant but
only 0.3 vCPU is required due to small workloads, the remaining 0.7 vCPU will be
allocated to other tenants as needed.

● When a resource configuration is updated, if it has been bound to a tenant and the
updated MIN_CPU value is greater than the original MIN_CPU value, check whether the
new value meets the resource constraints, or the resource constraints are not verified.

● If a tenant is using a resource configuration, the resource configuration cannot be
deleted.

● During vCPU contention, resources are allocated to tenants based on the value of
MIN_CPU specified for each tenant. However, there is a certain error, which is usually
within 1 vCPU.

● The peak instance read/write performance for each tenant is not directly proportional to
the allocated vCPUs. For example, if you allocate an instance with 16 vCPUs to two
tenants, each with a maximum of 8 vCPUs, the combined TPS when both tenants are
running at full capacity will not be twice the performance of an instance with 8 vCPUs.
That is, among two instances with the same specifications, the instance with multi-
tenancy enabled delivers slightly lower performance than that with multi-tenancy
disabled.

Tenant Management
When creating a tenant, you need to bind it to a resource configuration to restrict
vCPUs used by users under the tenant.

● Create a tenant.
CREATE TENANT tenant_name RESOURCE_CONFIG config_name [COMMENT [=]
'comment_string'];

● Alter a tenant.
ALTER TENANT tenant_name RESOURCE_CONFIG config_name [COMMENT [=]
'comment_string'];

● Drop a tenant.
DROP TENANT tenant_name;

● Query a tenant.
SELECT * FROM information_schema.DBA_RSRC_TENANT;

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

NO TE

● The proceeding statements can only be executed by user root.
● Creating a tenant:

● The value of tenant_name can contain up to 10 characters. Only lowercase letters,
digits, and underscores (_) are allowed.

● When a tenant is created, the system checks resource constraints to ensure that
the sum of the MIN_CPU values in the resource configurations of all tenants meets
the resource constraints.

● If a tenant is bound to shared_tenants_config, the tenant is a shared tenant.
Otherwise, the tenant is a dedicated tenant. During resource contention, resources
are first allocated to dedicated tenants based on the value of MIN_CPU. Any
remaining resources are then contested by both shared and dedicated tenants.

● Altering a tenant:
● If the MIN_CPU value of the newly bound resource configuration is at least that of

the original resource configuration, the system checks the resource constraints.
Ensure that the sum of the MIN_CPU values in the resource configurations of all
tenants meets the resource constraints.

● If a dedicated tenant is bound to shared_tenants_config, the tenant becomes a
shared tenant and any user-level resource isolation configurations under the tenant
are deleted.

● Dropping a tenant:
● Before dropping a tenant, you need to ensure that the databases and users of the

tenant have been deleted, or the tenant cannot be deleted.
● When a tenant is deleted, user-level resource isolation configurations associated

with the tenant are also deleted.

User Management
After multi-tenancy is enabled, there are users of system tenants and users of
common tenants. Existing users belong to system tenants. New users can belong
to system tenants or common tenants based on the interface semantics.

● Managing users under a system tenant
Creating a user
Create a user for a system tenant.
CREATE user [IF NOT EXISTS] user_name@host;

Create a user for a common tenant.
CREATE user [IF NOT EXISTS] 'user_name@tenant_name'@host;

Renaming a user
Rename a user under a system tenant.
RENAME USER user_from@host1 TO user_to@host2;

Rename a user under a common tenant.
RENAME USER 'user_from@tenant_name'@host1 TO 'user_to@tenant_name'@host2;

Dropping a user
Drop a user from a system tenant.
DROP USER [IF EXISTS] user_name@host;

Drop a user from a common tenant.
DROP USER [IF EXISTS] 'user_name@tenant_name'@host;

Authorizing a user

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

Grant the priv_type permissions of tenant_1 to 'user_1@tenant_1'@'%'.
GRANT priv_type ON *.* to 'user_1@tenant_1'@'%' with grant option;

View permissions.
SHOW grants for 'user_1@tenant_1'@'%';

● Managing users under a common tenant
Creating a user
Create a user for the current tenant.
CREATE user [IF NOT EXISTS] user_name@host;

Renaming a user
RENAME USER user_from@host1 TO user_to@host2;

Dropping a user
DROP USER [IF EXISTS] user_name@host;

Authorizing a user
Grant the priv_type permissions of the current tenant to user1.
GRANT priv_type ON *.* to 'user_1'@'%' with grant option;

View permissions.
SHOW grants for 'user_1';

NO TE

● When creating or dropping a user of a common tenant as a system tenant, you need to
use the user_name@tenant_name format.

● Usernames under a common tenant can contain a maximum of 20 characters.

● Some special users cannot be created under a tenant, including mysql.sys,
mysql.session, mysql.infoschema, and users reserved in the rds_reserved_users
parameter.

● When renaming a user of a common tenant as a system tenant, ensure that the values
of tenant_name in user_from and user_to are the same, or an error is returned.

● When multi-tenancy is disabled, users under common tenants cannot be renamed.

Database Management
There are databases of system tenants and databases of common tenants. System
tenants can access all databases, and common tenants can only access their own
databases.

● Managing databases under a system tenant
Creating a database
Create a database for a system tenant.
CREATE DATABASE [IF NOT EXISTS] `db_name`;

Create a database for a common tenant.
CREATE DATABASE [IF NOT EXISTS] `db_name@tanant_name`;

Dropping a database
Drop a database from a system tenant.
DROP DATABASE [IF EXISTS] `db_name`;

Drop a database from a common tenant.
DROP DATABASE [IF EXISTS] `db_name@tanant_name`;

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

● Managing databases under a common tenant
Create a database for the current tenant.
CREATE DATABASE [IF NOT EXISTS] 'db_name';

Drop a database from the current tenant.
DROP DATABASE [IF EXISTS] 'db_name';

NO TE

● Under a system tenant, you need to perform operations on databases of a common
tenant in db_name@tenant_name mode.

● The system databases SYS and MYSQL cannot be accessed by common tenants.

● Some special databases, such as INFORMATION_SCHEMA, PERFORMANCE_SCHEMA,
MYSQL, SYS, and __recyclebin__, cannot be created in a tenant.

● Allocating existing databases to tenants
To ensure compatibility after an upgrade or migration to an instance with
multi-tenancy enabled, existing databases are under system tenants by
default. You can allocate the existing databases to specified tenants.
Additionally, after multi-tenancy is enabled, you can allocate databases that
are created by system tenants and are not allocated to common tenants to
specified tenants.
Allocating a database
Allocate a database to common tenant tenant_name.
ALTER DATABASE db_name TENANT = `tenant_name`;

Allocate a database back to a system tenant.
ALTER DATABASE db_name TENANT = ``;

Querying the mappings
SELECT * FROM information_schema.DBA_RSRC_TENANT_DB;

NO TE

● The proceeding statements can only be executed by user root.

● If a database is created after multi-tenancy is enabled and named in the format of
db_name@tenant_name, it cannot be allocated using the database allocation
statements. Otherwise, an error will be returned.

● If you specify a non-existent tenant in the statements, an error will be returned.

● Connecting to a database as a user of a tenant
Under a system tenant, the original connection mode remains unchanged.
Under a common tenant, the user must be in the format of
user_name@tenant_name. The database must be in the format of db_name
or db_name@tenant_name.
mysql --host=**** -u user1@tenant_1 -D db1 -p pwssword;
mysql --host=**** -u user1@tenant_1 -D db1@tenant_1 -p pwssword;

After the connection is successful, the user is restricted by the resources of the
corresponding tenant.

User-level Resource Configurations

By default, users under a tenant share the resources of the tenant. To restrict user-
level resources, you can call the API in this section.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

CA UTION

User-level resource configurations are unavailable to shared tenants.

● Managing resource consumer groups (consumer_group)
Multiple users can belong to a given resource consumer group and they share
the resources associated with the resource consumer group. Users under a
tenant can connect to a database to manage resource consumer groups.
Creating a consumer group
dbms_resource_manager.create_consumer_group (
 consumer_group CHAR(128),
 comment CHAR(2000));

NO TE

● consumer_group: name of the resource consumer group. Only uppercase letters,
lowercase letters, digits, and underscores (_) are allowed.

● comment: description of the resource consumer group. The value can be ''.

Adding a user to a resource consumer group/Removing a user from a
resource consumer group
dbms_resource_manager.set_consumer_group_mapping (
 attribute CHAR(128),
 value varbinary(128),
 consumer_group CHAR(128));

NO TE

● attribute: mapping attribute to be added or modified. The current version supports
only USER.

● value: mapping attribute to be added or modified. The current version supports
only usernames.

● consumer_group: name of the resource consumer group. If this parameter is not
empty, users are added to the resource consumer group. If this parameter is empty
(''), users are removed from the resource consumer group.

Deleting a consumer group
dbms_resource_manager.delete_consumer_group (
 consumer_group CHAR(128));

NO TE

● consumer_group: name of the resource consumer group.

● When a resource consumer group is deleted, the resource plan directive and
resource consumer group mapping corresponding to the resource consumer group
are also deleted.

● If multi-tenancy is enabled, deleted users will be automatically removed from their
associated resource consumer groups. If multi-tenancy is disabled, deleted users
will remain in their associated resource consumer groups. However, if multi-
tenancy is later enabled, the system will remove these deleted users from their
resource consumer groups.

● If multi-tenancy is enabled, the mapping between a user and a resource consumer
group is not affected when the user is renamed. If you delete a user and create a
user with the same name after multi-tenancy is disabled, the user still belongs to
the original resource consumer group after the multi-tenancy is enabled.

Viewing resource consumer groups

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

The DBA_RSRC_CONSUMER_GROUPS view records information about
resource consumer groups. If you are under a system tenant, you can view the
resource consumer groups of all tenants. If you are under a common tenant,
you can only view the resource consumer groups of the current tenant.
select * from information_schema.DBA_RSRC_CONSUMER_GROUPS;

Viewing the mappings between users and resource consumer groups
The DBA_RSRC_GROUP_MAPPINGS view records the mappings between
users and resource consumer groups. If you are under a system tenant, you
can view the mappings between users and resource consumer groups of all
tenants. If you are under a common tenant, you can only view the mappings
between users and resource consumer groups of the current tenant.
select * from information_schema.DBA_RSRC_GROUP_MAPPINGS;

Resource Plan Management
A resource plan is used to enable or disable resource plan directives. Each resource
plan is associated with one or more resource plan directives. Enabling or disabling
a resource plan will activate or deactivate the corresponding resource plan
directives. Only one resource plan can be enabled per tenant.

● Create a resource plan.
dbms_resource_manager.create_plan (
 plan_name VARCHAR(128),
 comment VARCHAR(2000));

NO TE

● plan_name: resource plan name. Only uppercase letters, lowercase letters, digits,
and underscores (_) are allowed.

● comment: description of the resource plan. The value can be ''.
● If you delete an enabled resource plan, it will be left empty and its associated

resource plan directives will be deleted.
● mt_resource_plan_num: number of plans. By default, there are up to 128 plans.

● Enable or disable a resource plan.
dbms_resource_manager.set_resource_manager_plan(
 plan_name VARCHAR(128));

NO TE

● plan_name: resource plan name. If the value is empty (''), the resource plan is
disabled.

● Delete a resource plan.
dbms_resource_manager.delete_plan (
 plan_name VARCHAR(128));

NO TE

● plan_name: resource plan name.
● If you delete an enabled resource plan, the resource plan configuration will be

cleared and any associated resource plan directives will also be deleted.

● Query a resource plan.
The DBA_RSRC_PLANS view records details about resource plans. If you are
under a system tenant, you can view the resource plans of all tenants. If you
are under a common tenant, you can only view the resource plans of the
current tenant.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

SELECT * FROM information_schema.DBA_RSRC_PLANS;

Resource Plan Directive Management
A resource plan directive corresponds to only one resource consumer group and
describes the specific resource configuration of the resource consumer group. A
resource consumer group can be associated with multiple resource plan directives,
but only one can be enabled at a time. As mentioned earlier, you can enable a
resource plan directive by enabling a resource plan.

● Creating a resource plan directive
dbms_resource_manager.create_plan_directive (
 plan CHAR(128),
 group_or_subplan CHAR(128),
 comment VARCHAR(2000),
 mgmt_p1 bigint(20),
 utilization_limit bigint(20));

NO TE

● plan: resource plan name.
● group_or_subplan: name of the resource consumer group.
● comment: description of the resource plan directive. The value can be ''.
● mgmt_p1: percentage of total vCPUs of a tenant that is vCPUs committed to the

resource consumer group in the case of vCPU contention. The value range is [0,
100] (100: 100% vCPUs of the tenant are used). The sum of mgmt_p1 of all
resource plan directives associated with a resource plan of a tenant cannot exceed
100. In the event of vCPU contention among resource consumer groups of a
tenant, the vCPUs committed to each resource consumer group are preferentially
allocated based on an on-demand allocation policy, and the remaining vCPUs are
contested by each resource consumer group. For example, if 20% vCPUs are
committed to a resource consumer group but only 5% vCPUs are required due to
small workloads, the remaining 15% vCPUs will be allocated to other resource
consumer groups as needed.

● utilization_limit: upper limit on CPU utilization for a resource consumer group.
The value range is [1, 100]. The value 100 indicates that a group can use all vCPUs
of the tenant. The value 70 indicates that it can only use 70% vCPUs of the tenant.

● Users in a resource consumer group share the resources configured by the enabled
resource plan directive. For example, if user1 and user2 of a tenant are added to
consumer_group1, the utilization_limit value of the enabled resource plan
directive for consumer_group1 is 70, and the mgmt_p1 value is 10, then user1
and user2 can use up to 70% vCPUs of the tenant. During vCPU contention, the
total vCPUs that are committed to user1 and user2 are 10% vCPUs of the tenant.

● Updating a resource plan directive
dbms_resource_manager.update_plan_directive (
 plan CHAR(128),
 group_or_subplan CHAR(128),
 new_comment VARCHAR(2000),
 new_mgmt_p1 bigint(20),
 new_utilization_limit bigint(20));

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

NO TE

● plan: resource plan name.
● group_or_subplan: name of the resource consumer group.
● comment: description of the resource plan directive. The value can be ''.
● mgmt_p1: percentage of total vCPUs of a tenant that is vCPUs committed to the

resource consumer group in the case of vCPU contention. The value range is [0,
100] (100: 100% vCPUs of the tenant are used). The sum of mgmt_p1 of all
resource plan directives associated with a resource plan of a tenant cannot exceed
100. In the event of vCPU contention among resource consumer groups of a
tenant, the vCPUs committed to each resource consumer group are preferentially
allocated based on an on-demand allocation policy, and the remaining vCPUs are
contested by each resource consumer group. For example, if 20% vCPUs are
committed to a resource consumer group but only 5% vCPUs are required due to
small workloads, the remaining 15% vCPUs will be allocated to other resource
consumer groups as needed.

● utilization_limit: upper limit on CPU utilization for a resource consumer group.
The value range is [1, 100]. The value 100 indicates that a group can use all vCPUs
of the tenant. The value 70 indicates that it can only use 70% vCPUs of the tenant.

● Users in a resource consumer group share the resources configured by the enabled
resource plan directive. For example, if user1 and user2 of a tenant are added to
consumer_group1, the utilization_limit value of the enabled resource plan
directive for consumer_group1 is 70, and the mgmt_p1 value is 10, then user1
and user2 can use up to 70% vCPUs of the tenant. During vCPU contention, the
total vCPUs that are committed to user1 and user2 are 10% vCPUs of the tenant.

● Deleting a resource plan directive
dbms_resource_manager.delete_plan_directive (
 plan CHAR(128),
 group_or_subplan VARCHAR(128));

NO TE

● plan: resource plan name.
● group_or_subplan: name of the resource consumer group.
● If you delete a resource plan directive that has been enabled, the resource

configuration of the corresponding user will become invalid.

● Querying a resource plan directive
The DBA_RSRC_PLAN_DIRECTIVES view records details about resource plan
directives. If you are under a system tenant, you can view the resource plan
directives of all tenants. If you are under a common tenant, you can only view
the resource plan directives of the current tenant.
SELECT * FROM information_schema.DBA_RSRC_PLAN_DIRECTIVES;

User-level Configuration Clearing
You can clear all user-level resource configurations of a tenant, including resource
consumer groups, resource plans, and resource plan directives. If you execute this
statement under a system tenant, only the user-level resource configurations of
the system tenant are cleared.
dbms_resource_manager.clear_all_configs();

vCPU Usage Statistics
● User-level vCPU usage

The information_schema.cpu_summary_by_user view is added to display
the vCPU usage of each resource consumer group. If you are under a system

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

tenant, you can view the vCPU usage of resource consumer groups of all
tenants. If you are under a common tenant, you can only view the vCPU
usage of resource consumer groups of the current tenant.
SELECT * FROM information_schema.cpu_summary_by_user;

NO TE

● The column names in the query result are described as follows:
TENANT_NAME: name of the tenant the user belongs to.
CONSUMER_GROUP: name of the resource consumer group.
CPU_USAGE: vCPU usage of the resource consumer group, that is, the ratio of the
used vCPUs to the total vCPUs of the instance. For example, if an instance has 4
vCPUs and a resource consumer group uses 2 vCPUs, the value of CPU_USAGE is
50%.
CPU_USAGE_RELATIVE: relative vCPU usage of the resource consumer group, that
is, the ratio of the used vCPUs to the MAX_CPU value configured for the tenant.
For example, if the MAX_CPU value configured for a tenant is 4 and a resource
consumer group actually uses 2 vCPUs, the value of CPU_USAGE_RELATIVE is
50%.
INCLUDED_USERS: names of the users bound to the resource consumer group.

● A default resource consumer group default_group is created for a dedicated
tenant. Under the dedicated tenant, all users who are not bound to a specific
resource consumer group belong to default_group. By default, default_group can
use all vCPUs of the tenant. In the event of vCPU contention within the tenant, the
vCPUs committed to other resource consumer groups are preferentially allocated,
and the remaining vCPUs are allocated to default_group.

● Tenant-level vCPU usage
The information_schema.cpu_summary_by_tenant view is added to display
the vCPU usage of each tenant. If you are under a system tenant, you can
view the vCPU usage of all tenants. If you are under a common tenant, you
can only view the vCPU usage of the current tenant.
SELECT * FROM information_schema.cpu_summary_by_tenant;

NO TE

● The column names in the query result are described as follows:
TENANT_NAME: tenant name.
TENANT_TYPE: tenant type. Value exclusive indicates a dedicated tenant, and
value shared indicates a shared tenant.
CPU_USAGE: vCPU usage of the tenant, that is, the ratio of the used vCPUs to the
total vCPUs of the instance. For example, if an instance has 4 vCPUs and a tenant
uses 2 vCPUs, the value of CPU_USAGE is 50%.
CPU_USAGE_RELATIVE: relative vCPU usage of the tenant, that is, the ratio of the
vCPUs used by the tenant to the MAX_CPU value. For example, if the MAX_CPU
value configured for a tenant is 4 and the tenant actually uses 2 vCPUs, the value
of CPU_USAGE is 50%.

● After MIN_CPU of all dedicated tenants are ensured, the remaining vCPUs are
shared among all shared tenants. In the view, the CPU usage for each shared
tenant is displayed as the sum of the CPU usage of all shared tenants.

2.14 Column Compression
To reduce the storage occupied by data pages and costs, TaurusDB provides
algorithms ZLIB and ZSTD for fine-grained column compression. You can select

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

either of them to compress large columns that are not frequently accessed based
on the compression ratio and performance. Automatic column compression is also
supported.

Application scenario: There are large columns that are not frequently accessed in
tables and users want to compress these columns to reduce costs.

Constraints
● The kernel version of your TaurusDB instance must be 2.0.54.240600 or later.
● Partitioned tables, temporary tables, and non-InnoDB engine tables are not

supported.
● A column to be compressed cannot contain an index (primary key, unique

index, secondary index, foreign key, or full-text index).
● Only the following data types are supported: BLOB (including TINYBLOB,

BLOB, MEDIUMBLOB, and LONGBLOB), TEXT (including TINYTEXT, TEXT,
MEDIUMTEXT, and LONGTEXT). VARCHAR, and VARBINARY.

● This feature cannot be used on generated columns.
● EXCHANGE PARTITION cannot be executed between a partitioned table and a

table with compressed columns.
● IMPORT TABLESPACE is not supported.
● This feature can be used only in CREATE TABLE, ALTER TABLE ADD, ALTER

TABLE CHANGE, and ALTER TABLE MODIFY statements.
● ALTER TABLE ADD COLUMN does not support the INSTANT algorithm. The

INSTANT algorithm cannot be used when the ALTER TABLE {CHANGE|
MODIFY} syntax involves data changes.

● In automatic compression scenarios (rds_column_compression = 2),
compression attributes can be added only when the maximum length of a
column is at least the compression threshold
(rds_column_compression_threshold). In explicit compression scenarios
(rds_column_compression = 1), if the maximum length of a column is less
than the compression threshold, compression attributes can be added but a
warning message is received.

● If a table contains compressed columns, NDP is not supported.
● When you manually perform binlog synchronization, ALTER statements are

incompatible. You are advised to use HINT.
● When you use DRS to migrate data from one instance to another that does

not support column compression, the compression attribute is eliminated. The
full migration task can be performed. During incremental migration, if ALTER
statements contain compressed columns, the migration task fails.

● When physical backups are used to restore data, the related versions must
support column compression.

● If column compression has been used after the version upgrade, the version
cannot be rolled back to a version without this feature.

Syntax
The column_definition definition is extended to support compression when
column attributes are defined in CREATE TABLE, ALTER TABLE ADD, ALTER TABLE
CHANGE, and ALTER TABLE MODIFY statements.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

create_definition: {
 col_name column_definition
 | {INDEX | KEY} [index_name] [index_type] (key_part,...)
 [index_option] ...
 | {FULLTEXT | SPATIAL} [INDEX | KEY] [index_name] (key_part,...)
 [index_option] ...
 | [CONSTRAINT [symbol]] PRIMARY KEY
 [index_type] (key_part,...)
 [index_option] ...
 | [CONSTRAINT [symbol]] UNIQUE [INDEX | KEY]
 [index_name] [index_type] (key_part,...)
 [index_option] ...
 | [CONSTRAINT [symbol]] FOREIGN KEY
 [index_name] (col_name,...)
 reference_definition
 | check_constraint_definition
}

alter_option: {
 table_options
 | ADD [COLUMN] col_name column_definition
 [FIRST | AFTER col_name]
 | ADD [COLUMN] (col_name column_definition,...)
 | CHANGE [COLUMN] old_col_name new_col_name column_definition
 [FIRST | AFTER col_name]
 | MODIFY [COLUMN] col_name column_definition
 [FIRST | AFTER col_name]
 ...

column_definition is as follows:

column_definition: {
 data_type [NOT NULL | NULL] [DEFAULT {literal | (expr)}]
 [VISIBLE | INVISIBLE]
 [AUTO_INCREMENT] [UNIQUE [KEY]] [[PRIMARY] KEY]
 [COMMENT 'string']
 [COLLATE collation_name]
 [COLUMN_FORMAT {FIXED | DYNAMIC | DEFAULT}]
 [COLUMN_FORMAT {FIXED|DYNAMIC|DEFAULT}|COMPRESSED[={ZLIB|ZSTD}**]]
 [ENGINE_ATTRIBUTE [=] 'string']
 [SECONDARY_ENGINE_ATTRIBUTE [=] 'string']
 [STORAGE {DISK | MEMORY}]
 [reference_definition]
 [check_constraint_definition]
 | data_type
 [COLLATE collation_name]
 [GENERATED ALWAYS] AS (expr)
 [VIRTUAL | STORED] [NOT NULL | NULL]
 [VISIBLE | INVISIBLE]
 [UNIQUE [KEY]] [[PRIMARY] KEY]
 [COMMENT 'string']
 [reference_definition]
 [check_constraint_definition]
}

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 120

Parameter Description

Table 2-39 Parameter description

Parameter Description Value
Range

Default
Value

Level Dyna
mic
Valid
ation

rds_column
_compressi
on

● If this parameter is
set to 0, column
compression is
disabled.
Compressed
columns cannot be
created explicitly
or automatically.

● If this parameter is
set to 1,
compressed
columns can only
be created
explicitly.

● If this parameter is
set to 2,
compressed
columns can be
created explicitly
or automatically.

[0,2] 0 GLOBA
L

Yes

rds_default
_column_c
ompression
_algorithm

Controls default
compression
algorithm for column
compression. The
algorithm is used
when
● You explicitly

create a
compressed
column without
specifying a
specific
compression
algorithm.

● A compressed
column is created
automatically.

ZLIB or
ZSTD

ZLIB GLOBA
L

Yes

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

Parameter Description Value
Range

Default
Value

Level Dyna
mic
Valid
ation

rds_column
_compressi
on_thresho
ld

Controls the
threshold for
triggering column
compression.
● When the

maximum length
of a column is less
than this
threshold, a
compressed
column can be
explicitly created,
but a message is
displayed
indicating that the
compressed
column cannot be
automatically
created.

● When the
maximum length
of a column is at
least to the
threshold, a
compressed
column can be
created explicitly
or automatically.

[20-429496
7295]

100 GLOBA
L

Yes

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 122

Parameter Description Value
Range

Default
Value

Level Dyna
mic
Valid
ation

rds_zlib_col
umn_comp
ression_lev
el

Specifies the
compression level of
the ZLIB column
compression
algorithm.
● If this parameter is

set to 0, columns
are not
compressed.

● Setting this
parameter to a
value other than 0
will affect the
compression speed
and effectiveness.
A smaller value
indicates faster
compression but a
poorer effect,
while a larger
value indicates
slower
compression but a
better effect.

[0,9] 6 GLOBA
L

Yes

rds_zstd_co
lumn_com
pression_le
vel

Specifies the
compression level of
the ZSTD column
compression
algorithm.
A smaller value
indicates faster
compression but a
poorer effect, while a
larger value indicates
slower compression
but a better effect.

[1,22] 3 GLOBA
L

Yes

Example
1. Explicitly create a compressed column.

mysql> show variables like 'rds_column_compression';
+------------------------+-------+
| Variable_name | Value |
+------------------------+-------+
| rds_column_compression | 1 |
+------------------------+-------+
1 row in set (0.00 sec)

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

mysql> show variables like 'rds_default_column_compression_algorithm';
+--+-------+
| Variable_name | Value |
+--+-------+
| rds_default_column_compression_algorithm | ZLIB |
+--+-------+
1 row in set (0.00 sec)

mysql> create table t1(c1 varchar(100) compressed, c2 varchar(100) compressed=zlib, c3
varchar(100) compressed=zstd) default charset=latin1;
Query OK, 0 rows affected (0.06 sec)

mysql> show create table t1\G
*************************** 1. row ***************************
Table: t1
Create Table: CREATE TABLE `t1` (
`c1` varchar(100) /*!99990 800220201 COMPRESSED=ZLIB */ DEFAULT NULL,
`c2` varchar(100) /*!99990 800220201 COMPRESSED=ZLIB */ DEFAULT NULL,
`c3` varchar(100) /*!99990 800220201 COMPRESSED=ZSTD */ DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

2. Automatically create a compressed column.
mysql> set global rds_column_compression = 2;
Query OK, 0 rows affected (0.00 sec)

mysql> show variables like 'rds_column_compression';
+------------------------+-------+
| Variable_name | Value |
+------------------------+-------+
| rds_column_compression | 2 |
+------------------------+-------+
1 row in set (0.01 sec)

mysql> show variables like 'rds_column_compression_threshold';
+----------------------------------+-------+
| Variable_name | Value |
+----------------------------------+-------+
| rds_column_compression_threshold | 100 |
+----------------------------------+-------+
1 row in set (0.01 sec)

mysql> show variables like 'rds_default_column_compression_algorithm';
+--+-------+
| Variable_name | Value |
+--+-------+
| rds_default_column_compression_algorithm | ZLIB |
+--+-------+
1 row in set (0.01 sec)

mysql> create table t2(c1 varchar(99), c2 varchar(100)) default charset=latin1;
Query OK, 0 rows affected (0.05 sec)

mysql> show create table t2\G
*************************** 1. row ***************************
Table: t2
Create Table: CREATE TABLE `t2` (
`c1` varchar(99) DEFAULT NULL,
`c2` varchar(100) /*!99990 800220201 COMPRESSED=ZLIB */ DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
1 row in set (0.01 sec)

3. Disable column compression.
mysql> set global rds_column_compression = 0;
Query OK, 0 rows affected (0.00 sec)

mysql> show variables like 'rds_column_compression';
+------------------------+-------+
| Variable_name | Value |

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

+------------------------+-------+
| rds_column_compression | 0 |
+------------------------+-------+
1 row in set (0.01 sec)

mysql> show variables like 'rds_column_compression_threshold';
+----------------------------------+-------+
| Variable_name | Value |
+----------------------------------+-------+
| rds_column_compression_threshold | 100 |
+----------------------------------+-------+
1 row in set (0.01 sec)

mysql> create table t3(c1 varchar(100) compressed, c2 varchar(100) compressed=zlib, c3
varchar(100) compressed=zstd) default charset=latin1;
Query OK, 0 rows affected, 3 warnings (0.04 sec)

mysql> show create table t3\G
*************************** 1. row ***************************
Table: t3
Create Table: CREATE TABLE `t3` (
`c1` varchar(100) DEFAULT NULL,
`c2` varchar(100) DEFAULT NULL,
`c3` varchar(100) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
1 row in set (0.01 sec)

Result Verification
1. Run the show create table statement to display the table structure

information. If the information contains "/*! If the content in "99990
800220201 COMPRESSED=xxxx */", column compression is used.
Example
mysql> show create table t1\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t1` (
 `c1` varchar(100) /*!99990 800220201 COMPRESSED=ZLIB */ DEFAULT NULL,
 `c2` varchar(100) /*!99990 800220201 COMPRESSED=ZLIB */ DEFAULT NULL,
 `c3` varchar(100) /*!99990 800220201 COMPRESSED=ZSTD */ DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

2. Use the system view information_schema.columns to query compressed
columns.
Example
mysql> select TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, EXTRA from
information_schema.columns where extra like '%compressed%';
+--------------+------------+-------------+-----------------+
| TABLE_SCHEMA | TABLE_NAME | COLUMN_NAME | EXTRA |
+--------------+------------+-------------+-----------------+
| test | t1 | c1 | COMPRESSED=ZLIB |
| test | t1 | c2 | COMPRESSED=ZLIB |
| test | t1 | c3 | COMPRESSED=ZSTD |
| test | t2 | c2 | COMPRESSED=ZLIB |
+--------------+------------+-------------+-----------------+
4 rows in set (0.50 sec)

3. Query the status information to determine the actual number of times that
the column compression or decompression API is called.
mysql> show global status like '%column%compress%';
+--------------------------------+-------+
| Variable_name | Value |
+--------------------------------+-------+
| Innodb_column_compress_count | 243 |

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

| Innodb_column_uncompress_count | 34 |
+--------------------------------+-------+

4. Run the following statement or view the information on the monitoring page
to compare the table sizes before and after compression and check the
compression effect.
SELECT table_name AS Table, round(((data_length + index_length) / 1024 / 1024), 2) AS Size in MB
FROM information_schema.TABLES WHERE table_schema = "***" and table_name='***'

Compression Ratio and Performance Impact Verification
1. Insert 10,000 rows of data in a table randomly. Each row consists of 32

character strings returned by 400 MD5 functions.
CREATE TABLE `random_data` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`data` longtext,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

DELIMITER $$
CREATE PROCEDURE `generate_random_data`()
BEGIN
 DECLARE i INT DEFAULT 1;
 DECLARE j INT DEFAULT 1;
 DECLARE str longtext;
 WHILE i <= 10000 DO
 SET j = 1;
 SET str = '';
 WHILE j <= 400 DO
 SET str = CONCAT(str, MD5(RAND()));
 SET j = j + 1;
 END WHILE;
 INSERT INTO `random_data` (`data`) VALUES (str);
 SET i = i + 1;
 END WHILE;
END$$
DELIMITER ;

Set rds_column_compression to 0 first and then set it to 2. Retain the default
values for other parameters. Import the preceding table structure and invoke
a stored procedure to insert data. Use the ZLIB or ZTSD algorithm to
compress data. The ratio of the data file size before and after compression is
1.8.

2. Use sysbench to import 64 tables. Each table contains 10 million rows of data.
The types of the c and pad columns are changed to varchar. The modified
table structure is as follows:
CREATE TABLE `sbtest1` (
 `id` int NOT NULL AUTO_INCREMENT,
 `k` int NOT NULL DEFAULT '0',
 `c` varchar(120) COLLATE utf8mb4_0900_bin NOT NULL DEFAULT '',
 `pad` varchar(60) COLLATE utf8mb4_0900_bin NOT NULL DEFAULT '',
 PRIMARY KEY (`id`),
 KEY `k_1` (`k`)
) ENGINE=InnoDB AUTO_INCREMENT=10000001 DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_bin

– Set rds_column_compression to 0 first and then set it to 2, and retain
the default values for other parameters. Import the table structure and
data. After the calculation, only column c is compressed using ZLIB or
ZSTD, the ratio of the data file size before and after compression is 1.2.

– Theoretically, a higher compression level has a greater impact on
performance. After compression, the performance loss is about 10%.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

2.15 Table Recycle Bin
TaurusDB provides table recycle bin. After this function is enabled, the DROP
TABLE statement that meets conditions does not directly delete a specified table.
Instead, the table is temporarily stored in the recycle bin. When the maximum
retention period expires, the table is automatically deleted in the backend.

You can change the retention period of a deleted table in the recycle bin. You can
also restore or permanently delete a table from the recycle bin at any time.

Constraints
● The kernel version of your TaurusDB instance must be 2.0.57.240900 or later.
● If there is a database called __recyclebin__ in your instance, the pre-upgrade

check may fail when you upgrade your instance to 2.0.57.240900 or later. To
upgrade your instance, delete the __recyclebin__ database first. Of course, if
you still want to retain the __recyclebin__ database as a regular database,
submit an application by choosing Service Tickets > Create Service Ticket in
the upper right corner of the management console.

● Table recycle bin is only available for regular InnoDB tables. It is unavailable
for tables in shared tablespaces, tables with full-text indexes, temporary
tables, non-InnoDB tables, tables with secondary engines, system catalogs, or
hidden tables.

● When you use a DROP TABLE statement to delete multiple tables, ensure that
these tables are regular InnoDB tables. Otherwise, the statement fails to be
executed based on the setting of rds_recycle_bin_mode or all tables are
permanently deleted.

● Table recycle bin only stores tables deleted using DROP TABLE statements. It
means that other deletion statements will delete tables permanently, instead
of moving tables to the recycle bin.

● If an instance has a binlog-based replication task (such as DRS and DR
instances) and the binlog record mode of the recycle bin is ORIGIN, clearing
or restoring tables in the recycle bin at the source end may cause replication
errors or data inconsistency. You are advised to set the binlog record mode of
the recycle bin to TRANSLATE.

● DRS does not fully support recycle bin. If replication is interrupted because the
recycle bin is enabled, reset the task. Alternatively, contact technical support
by choosing Service Tickets > Create Service Ticket in the upper right corner
of the management console.

● Table recycle bin in version 2.0.57.240900 supports only tables with names
composed of ASCII characters, such as English letters, numbers, and common
punctuation marks. Other table name character types, such as Latin letters,
Greek letters, and Chinese characters, will be supported in version
2.0.60.241200.

NO TE

If you try to recycle or restore tables whose names contain unsupported character
types in version 2.0.57.240900, the connection may hang. In such cases, reboot the
instance or perform a primary/standby switchover. Once the instance is recovered,
disable the recycle bin and delete the tables.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

https://console-intl.huaweicloud.com/ticket/?region=ap-southeast-1&locale=en-us#/ticketindex/createIndex
https://console-intl.huaweicloud.com/ticket/?region=ap-southeast-1&locale=en-us#/ticketindex/createIndex

Overview
When you create an instance of version is 2.0.57.240900 or later, or upgrade an
existing instance to 2.0.57.240900 or later, TaurusDB will initialize database
__recyclebin__. After you enable table recycle bin, tables specified in a DROP
TABLE statement are temporarily moved to database __recyclebin__ and renamed.

NO TE

● If tables specified in a DROP TABLE statement are not supported by the recycle bin, they
will be directly deleted.

● If recycle bin is enabled for an instance and a table that has constraints with the same
name is temporarily deleted, the table may fail to be moved to the recycle bin because
database __recyclebin__ also has constraints with the same name. If the table fails to
be moved to the recycle bin, check whether the deleted table has such constraints. If
yes, delete the constraints and execute the DROP TABLE statement again to delete the
table.

Tables in the recycle bin are named in the following format:

__<storage engine name>_<schema name>_<table name>_<id>

NO TE

Ensure that <id> of each table in the recycle bin is unique. After tables with the same name
are moved to the recycle bin, there will be no duplicate tables. If <schema name> or
<table name> is longer than 10 characters, only the first 10 characters will be displayed in
the recycle bin, and an underscore (_) will be added after <id> to indicate that the original
schema name or table name is truncated.

● Enabling table recycle bin
You can enable table recycle bin in either of the following ways:
– Click the TaurusDB instance name. Choose Parameters in the navigation

pane and reset the rds_recycle_bin_mode parameter.
– Run a command in a session.

Example:
set rds_recycle_bin_mode=PRIORITY_RECYCLE_BIN;

Table 2-40 lists some table recycle bin parameters. You can set them as
required.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 128

Table 2-40 Table recycle bin parameters

Parameter Level Description

rds_recycle_bin_mo
de

Global, Session Controls whether to enable
recycle bin.
Value:
● OFF (default value): Recycle

bin is disabled.
● PRIORITY_RECYCLE_BIN: If

a DROP statement contains
both tables that support
recycle bin and tables that
do not support recycle bin,
the statement fails and an
error is reported.

● PRIORITY_DROP_TABLE: If
a DROP statement contains
both tables that support
recycle bin and tables that
do not support recycle bin,
all tables are permanently
deleted and cannot be
restored.

rds_recycle_schedul
er

Global Controls whether the backend
automatically clears expired
tables from the recycle bin.
Value:
● OFF (default value): The

backend does not
automatically clear expired
tables from the recycle bin.
Instead, they are stored in
the recycle bin for a long
time.

● ON: The backend
automatically clears expired
tables from the recycle bin.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 129

Parameter Level Description

rds_recycle_bin_rete
ntion

Global Controls how many seconds
tables in the recycle bin are
stored for.
Default value: 259200 (three
days); value range: 0 to
2592000.
If rds_recycle_scheduler is set
to ON, and the retention period
of tables in the recycle bin
exceeds the parameter value,
the tables will be automatically
deleted and cannot be restored.

rds_recycle_bin_binl
og_mode

Global, Session Controls how DDL statements
related to the recycle bin are
recorded in binlogs.
Value:
● ORIGIN (default value): DDL

statements related to the
recycle bin are directly
recorded in binlogs.

● TRANSLATE: DDL
statements related to the
recycle bin are converted to
those supported by MySQL
Community Edition and
recorded in binlogs.

NO TE

● After the rds_recycle_bin_retention parameter is modified, the recycle bin
recalculates the estimated time for automatically clearing all tables in the recycle
bin based on the time they were first placed in the recycle bin.

● When rds_recycle_bin_binlog_mode is set to TRANSLATE, any DROP TABLE and
restore_table operations in the recycle bin will be recorded in the binlog as
RENAME TABLE operations. Even if the destination is a TaurusDB instance, the
show_tables, restore_table, and purge_table statements cannot be used for tables
that are replicated to destination database __recyclebin__ through binlogs, and the
recycle bin backend of the destination instance will not automatically clear those
tables. Tables in the recycle bin of the destination instance can be restored and
cleared only by replaying restore_table and purge_table at the source instance or
enabling automatic backend cleanup.

● Viewing tables in the recycle bin
You can run the show command to view table details in the recycle bin such
as the current and original schema and table names, as well as the time when
a table was moved to the recycle bin and when it will be automatically
cleared.
For details, see Examples.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 130

● Restoring tables from the recycle bin
You can run the restore command to restore a table from the recycle bin to
the original table in the original schema or a specified table in a specified
schema. After the restoration is successful, the table in the recycle bin is
deleted and cannot be restored again.
For details, see Examples.

● Enabling automatic backend cleanup
After automatic backend cleanup is enabled, a backend cleanup thread will be
created on the instance host to automatically clean tables that have reached
the maximum retention period (three days by default). Tables cleared by the
backend are permanently deleted and cannot be restored.
You can enable automatic backend cleanup in the following way:
Click the TaurusDB instance name. Choose Parameters in the navigation pane
and change the value of rds_recycle_scheduler to ON.

Table 2-41 Parameter description

Parameter Level Description

rds_recycle_schedul
er

Global Controls whether the backend
automatically clears expired
tables from the recycle bin.
Value:
● OFF (default value): The

backend does not
automatically clear expired
tables from the recycle bin.

● ON: The backend
automatically clears expired
tables from the recycle bin.

NO TE

For standby instances in a RegionlessDB cluster, the backend does not clear expired
tables from the recycle bin.

● Clearing specified tables
You can run the purge command to clear a table in the recycle bin. After the
command is executed, the table is permanently deleted and cannot be
restored.
For details, see Examples.

● Controlling recycle bin permissions
Deleted tables are moved to database __recyclebin__ in the recycle bin. To
view, restore, or clear those tables, you need to run commands provided by
the recycle bin and have the following permissions:
– To view details about tables in the recycle bin, you must have the SELECT

permission on the tables in __recyclebin__.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 131

– To clear specified tables in the recycle bin, you must have the DROP
permission on the tables in __recyclebin__.

– To restore specified tables in the recycle bin, you must have the ALTER
and DROP permissions on the tables in __recyclebin__, and CREATE and
INSERT permissions on the destination tables.

NO TE

● Tables in the recycle bin occupy the storage space of the instance until they
are cleared. If you want to release the storage space, clear the tables in the
recycle bin.

● After a table is moved to the recycle bin, its triggers and foreign keys are
permanently deleted and cannot be restored.

Examples
Table recycle bin provides the following commands to allow you to operate tables
temporarily stored in the recycle bin.

● Viewing tables in the recycle bin
call dbms_recyclebin.show_tables();
Information similar to the following is returned.
+----------------+--------------------------+---------------+--------------+---------------------
+---------------------+
| SCHEMA | TABLE | ORIGIN_SCHEMA | ORIGIN_TABLE | RECYCLED_TIME |
PURGE_TIME |
+----------------+--------------------------+---------------+--------------+---------------------
+---------------------+
| __recyclebin__ | __innodb_test_db_t1_1069 | test_db | t1 | 2024-09-29 08:48:27 |
2024-10-02 08:48:27 |
| __recyclebin__ | __innodb_test_db_t2_1070 | test_db | t2 | 2024-09-29 08:48:44 |
2024-10-02 08:48:44 |
+----------------+--------------------------+---------------+--------------+---------------------
+---------------------+

Table 2-42 Parameter description

Parameter Description

SCHEMA The schema of the recycle bin.

TABLE The name of the table after the
table was moved to the recycle bin.

ORIGIN_SCHEMA The schema of the original table
before the table was moved to the
recycle bin.

ORIGIN_TABLE The original name of the table.

RECYCLED_TIME The time when the table was moved
to the recycle bin.

PURGE_TIME The estimated time when the table
is automatically cleared.

● Restoring tables from the recycle bin

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 132

– Create a table with the same structure as the original table, and then
execute the INSERT INTO ... SELECT ... statement to restore data to the
new table.
Example:
Query the table whose original schema name is db and original table
name is t1 in the recycle bin.
call dbms_recyclebin.show_tables();
Information similar to the following is returned.
+----------------+--------------------------+---------------+--------------+---------------------
+---------------------+
| SCHEMA | TABLE | ORIGIN_SCHEMA | ORIGIN_TABLE | RECYCLED_TIME |
PURGE_TIME |
+----------------+--------------------------+---------------+--------------+---------------------
+---------------------+
| __recyclebin__ | __innodb_test_db_t1_1069 | db | t1 | 2024-09-29 08:48:27 |
2024-10-02 08:48:27 |
| __recyclebin__ | __innodb_test_db_t2_1070 | db | t2 | 2024-09-29 08:48:44 |
2024-10-02 08:48:44 |
+----------------+--------------------------+---------------+--------------+---------------------
+---------------------+

Based on the query results, the name of the table to be restored in the
recycle bin is __innodb_test_db_t1_1069. Execute the INSERT INTO ...
SELECT ... statement to restore the data of __innodb_test_db_t1_1069 in
the recycle bin to the new table t1.
INSERT INTO `db`.`t1` SELECT * FROM
`__recyclebin__`.`__innodb_test_db_t1_1069`;

NO TE

Executing the INSERT INTO ... SELECT ... statement does not remove the data
temporarily stored in the recycle bin. Data can be restored for multiple times, and
the generated binlogs have the best compatibility. If an instance has a binlog-
based replication link (such as DRS and DR instances), you are advised to use this
method to restore data. This reduces the risk of replication interruption caused by
reasons such as the destination does not support table recycle bin or insufficient
user permissions.

– Restore a table in the recycle bin to the original table in the original
database.
call dbms_recyclebin.restore_table('TABLE_NAME');

Table 2-43 Parameter description

Parameter Description

TABLE_NAME The name of the table after the
table was moved to the recycle
bin.

Example:
Restore table __innodb_test_db_t1_1069 from the recycle bin to the
original database test_db and retain the original table name t1.
call dbms_recyclebin.restore_table('__innodb_test_db_t1_1069');

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 133

– Restore a table from the recycle bin to a specified table in a specified
database.

call dbms_recyclebin.restore_table('TABLE_NAME', 'DEST_DB',
'DEST_TABLE');

Table 2-44 Parameter description

Parameter Description

TABLE_NAME The name of the table after the
table was moved to the recycle
bin.

DEST_DB The database you want to restore
the table to.

DEST_TABLE The name of the restored table.

Example:

Restore table __innodb_test_db_t1_1069 from the recycle bin to
database test_db2 and specify the name of the restored table as t3.

call
dbms_recyclebin.restore_table('__innodb_test_db_t1_1069','test_db2','t
3');

NO TE

● Before the restoration, ensure that the destination database exists, or the
restoration will fail.

● Before the restoration, ensure that there is no table with the same name in
the destination database, or the restoration will fail.

● When using the table recycle bin commands, ensure that there are no extra
spaces before or after the database or table names inside single quotation
marks (').

● Clearing a specified table in the recycle bin

call dbms_recyclebin.purge_table('TABLE_NAME');

Table 2-45 Parameter description

Parameter Description

TABLE_NAME The name of the table after the
table was moved to the recycle bin.

Example:

Clear table __innodb_test_db_t1_1069 in the recycle bin.

call dbms_recyclebin.purge_table('__innodb_test_db_t1_1069');

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 134

2.16 Cold Data Preloading for Read Replicas

Functions

When a cluster TaurusDB instance is running, the primary node monitors the least
recently used (LRU) linked list and synchronizes active data pages (pages read
from storage or moved within a cache pool) to read replicas. The read replicas
preload the pages to the cache pool to improve the cache hit ratio and reduce the
performance jitter after a read replica is promoted to primary.

Figure 2-24 Diagram

Precautions
● To use this function, the kernel version of your TaurusDB instance must be

2.0.57.240900 or later.
● Data pages of both preloading and read services are cached in the cache pool.

When preloading and read services are enabled at the same time for read
replicas, the page hit ratio of read services may decrease.

Enabling Cold Data Preloading for Read Replicas
1. Log in to the management console.

2. Click in the upper left corner and select a region and project.

3. Click in the upper left corner of the page and choose Databases >
TaurusDB.

4. On the Instances page, click the instance name.
5. In the navigation pane, choose Parameters.
6. Search for innodb_rds_buf_preload_enable in the search box and change its

value to ON.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 135

https://console-intl.huaweicloud.com/?locale=en-us

Table 2-46 Parameter description

Parameter Description

innodb_rds_buf_preload_enable Controls whether to enable cold
data preloading for read replicas.
● ON: Cold data preloading for

read replicas is enabled.
● OFF: Cold data preloading for

read replicas is disabled.

2.17 Self-Healing of Read Replicas upon a Replication
Latency

TaurusDB is a cloud-native database with decoupled compute and storage. The
primary node and read replicas share underlying storage data. To ensure
consistency of cached data in memory, after the primary node communicates with
read replicas, the read replicas need to read the redo log generated by the primary
node from Log Stores to update the cached data in memory.

Figure 2-25 Principle diagram

Communications Between the Primary Node and Read Replicas
Although the primary node and read replicas share underlying storage data, they
still need to communicate with each other.

● Content sent by the primary node to read replicas: redo log description, such
as the latest LSN of the redo log and the API for reading the log internally.

● Content sent by read replicas to the primary node:
– Views of the read replicas. The views store the transaction list. The

primary node can purge undo logs based on the view of each read
replica.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 136

– recycle_lsn values of the read replicas. recycle_lsn indicates the
minimum LSN of the data pages read by a read replica. The LSN of the
data pages read by a read replica will not be smaller than its recycle_lsn
value. The primary node collects the recycle_lsn value of each read
replica and evaluates the position for clearing the underlying redo log.

– Basic information about each read replica, such as the ID of the read
replica and timestamp of the latest message. The primary node uses this
information to manage read replicas.

After the communications, the read replicas can read the redo log and update the
visibility of data.

How Read Replica Latency Is Calculated

Read replica latency refers to the amount of time that passes between when data
is updated on the primary node and when the updated data is obtained on the
read replicas. Read replicas read the redo log to update cached data. visible lsn is
used to record the LSN of the redo log. It indicates the maximum LSN of the data
pages read by read replicas. flush_to_disk_lsn is used to record the LSN of the
latest redo log generated each time a data record is updated or inserted on the
primary node. It indicates the maximum LSN of the data pages accessed by the
primary node. Read replica latency is actually calculated based on the values of
visible lsn and flush_to_disk_lsn. For example, at time t1, the flush_to_disk_lsn
value is 100 and the visible lsn value is 80. After a period of time, read replicas
replay the redo log. At time t2, the flush_to_disk_lsn value is 130 and the visible
lsn value is 100. In this case, read replica latency is calculated as follows: t2 - t1.

How Read Replicas Advance the Visible LSN

The speed at which read replicas advance the visible LSN is the crucial factor that
affects the latency.

Read replicas advance the visible LSN as follows:

1. Read replicas communicate with the primary node to obtain the LSN and
description of the latest redo log.

2. Read replicas read the redo log from Log Stores to memory.
3. Read replicas parse the redo log, invalidate metadata in memory, and update

views in memory.
4. Read replicas advance the visible LSN.

In most cases, there is a minimal latency between the primary and read replicas.
However, in certain scenarios, such as when the primary node is executing a large
number of DDL statements, there may be a significant latency.

Self-Healing Policy

If there is a significant read replica latency, users cannot access the latest data
from read replicas, which may affect data consistency. To address this, the current
database policy is that if the latency exceeds the default value (30s), read replicas
reboot. After the reboot, the read replicas will read the latest data from storage,
and there is no latency.

TaurusDB
Kernels 2 Common Kernel Functions

Issue 01 (2024-12-30) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 137

	Contents
	1 TaurusDB Kernel Version Release History
	2 Common Kernel Functions
	2.1 Parallel Query
	2.1.1 Overview
	2.1.2 Precautions
	2.1.3 Enabling Parallel Query
	2.1.4 Testing Parallel Query Performance

	2.2 Near Data Processing
	2.2.1 Overview

	2.3 DDL Optimization
	2.3.1 Parallel DDL
	2.3.2 DDL Fast Timeout
	2.3.3 Non-blocking DDL
	2.3.4 Progress Queries for Creating Secondary Indexes

	2.4 Backward Index Scan
	2.5 Statement Outline
	2.6 Idle Transaction Disconnection
	2.6.1 Function
	2.6.2 Parameter Description
	2.6.3 Example

	2.7 LIMIT...OFFSET Pushdown
	2.7.1 Function
	2.7.2 Usage
	2.7.3 Performance Tests

	2.8 Conversion of IN Predicates Into Subqueries
	2.8.1 Function
	2.8.2 Precautions
	2.8.3 Usage
	2.8.4 Performance Tests

	2.9 DISTINCT Optimization for Multi-Table Joins
	2.10 Diagnosis on Large Transactions
	2.11 Enhanced Partitioned Tables
	2.11.1 Subpartitioning
	2.11.1.1 Overview
	2.11.1.2 Precautions
	2.11.1.3 RANGE-RANGE
	2.11.1.4 RANGE-LIST
	2.11.1.5 LIST-RANGE
	2.11.1.6 LIST-LIST
	2.11.1.7 HASH-HASH
	2.11.1.8 HASH-KEY
	2.11.1.9 HASH-RANGE
	2.11.1.10 HASH-LIST
	2.11.1.11 KEY-HASH
	2.11.1.12 KEY-KEY
	2.11.1.13 KEY-RANGE
	2.11.1.14 KEY-LIST

	2.11.2 LIST DEFAULT HASH
	2.11.3 INTERVAL RANGE
	2.11.4 Partition-level MDL

	2.12 Hot Row Update
	2.13 Multi-tenant Management and Resource Isolation
	2.14 Column Compression
	2.15 Table Recycle Bin
	2.16 Cold Data Preloading for Read Replicas
	2.17 Self-Healing of Read Replicas upon a Replication Latency

